Cargando…

Landslide hazards, risks and disasters /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Davies, Timothy R. H. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2021.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Landslide Hazards, Risks, and Disasters
  • Landslide Hazards, Risks, and Disasters
  • Copyright
  • Contents
  • Contributors
  • Editorial foreword to the second edition
  • References
  • 1
  • Landslide hazards, risks and disasters: introduction
  • 1.1 Introduction
  • 1.2 Understanding landslide hazards
  • 1.3 Understanding landslide risks
  • 1.4 Understanding future landslide disasters
  • 1.5 Conclusion
  • References
  • 2
  • Landslide causes and triggers
  • 2.1 Introduction
  • 2.2 Concept of instability
  • 2.3 Stability factors
  • 2.3.1 Material strength and topography
  • 2.3.2 Strength degradation
  • 2.3.2.1 Stress-induced fatigue
  • 2.3.2.2 Chemical weathering
  • 2.3.2.3 Cold environment processes
  • 2.3.2.4 Discussion
  • 2.3.3 Groundwater changes
  • 2.3.4 Ground shaking
  • 2.4 Summary and conclusion
  • References
  • 3
  • Landslides in bedrock
  • 3.1 Introduction
  • 3.2 Rock materials
  • 3.2.1 Structural control in strong rock
  • 3.2.2 Intact rock strength
  • 3.2.3 Rock mass strength
  • 3.3 Mass movement characteristics
  • 3.3.1 Volume and velocity
  • 3.3.2 Landslide displacement activity
  • 3.3.3 Progressive failure
  • 3.3.4 Runout
  • 3.4 Mass movement types
  • 3.4.1 Rockfalls
  • 3.4.2 Rockslides
  • 3.4.3 Rock spreads
  • 3.4.4 Rock avalanches
  • 3.4.5 Sackungen/deep-seated gravitational slope deformation
  • 3.4.6 Complex bedrock mass movements
  • 3.4.7 Secondary hazards associated with bedrock landslides
  • 3.5 Case studies
  • 3.5.1 Seymareh, Iran
  • 3.5.2 Mount Meager, Canada
  • 3.5.3 La Clap�ire, France
  • 3.5.4 Threatening Rock, United States of America
  • 3.6 Bedrock landslide recognition and management
  • 3.6.1 Anticipation
  • 3.6.2 Avoidance
  • 3.6.3 Prevention
  • 3.7 Risk management of rock slopes
  • 3.8 Summary
  • References
  • 4
  • Coseismic landslides
  • 4.1 Seismically triggered landslides
  • 4.1.1 Introduction.
  • 4.1.2 A note on terminology
  • 4.1.3 Landslides caused by earthquakes
  • 4.1.4 Geological materials and EILs
  • 4.2 Mechanics of earthquake-induced landslides
  • 4.2.1 Earthquake energy, magnitude and attenuation
  • 4.2.2 Topographic amplification and landslides
  • 4.2.3 Shaking and porewater pressures
  • 4.2.4 Summary
  • 4.3 Stability analysis and hazard assessment
  • 4.3.1 Pseudostatic and limit state models
  • 4.3.2 The Newmark Sliding block model
  • 4.3.3 Coupled analyses
  • 4.3.4 Statistical models, hazard mapping and GIS
  • 4.4 Limitations of current understanding
  • 4.4.1 Seismological unknowns
  • 4.4.2 Geotechnical considerations
  • 4.4.3 Concluding comments
  • References
  • Further reading
  • 5
  • Volcanic debris avalanches
  • 5.1 Introduction
  • 5.2 Volcanic debris avalanches
  • 5.3 Types of volcanic landslides
  • 5.3.1 Large-scale volcano and substrata landslides
  • 5.4 Deep-seated volcanic landslide deformation: priming and triggers
  • 5.5 Deep-seated volcano gravitational deformation
  • 5.6 Regional tectonic influences
  • 5.7 Priming of volcanic landslides
  • 5.8 Triggering volcanic landslides
  • 5.9 The structure of volcanic landslides
  • 5.10 Volcanic landslide deposits
  • 5.10.1 Scar
  • 5.10.2 Toreva blocks
  • 5.10.3 Hummocks
  • 5.10.4 Inter-hummock areas
  • 5.10.5 Ridges
  • 5.10.6 Marginal zones
  • 5.10.7 Deposit facies
  • 5.10.8 Block facies
  • 5.10.9 Matrix facies
  • 5.10.10 Mixed facies
  • 5.10.11 Basal facies
  • 5.11 Debris avalanche textures and structures
  • 5.12 Secondary hazards of volcanic landslides
  • 5.13 Volcanic landslide transport mechanisms
  • 5.14 Hazards from volcanic landslides
  • 5.15 Summary
  • References
  • 6
  • Peat landslides
  • 6.1 Introduction and background
  • 6.2 The nature of peat, its structure and material properties
  • 6.2.1 Peat properties
  • 6.2.2 Peat deposits and peat depths.
  • 6.2.3 'Peat' or 'bog' mass movements?
  • 6.3 Morphology and classification of peat landslides
  • 6.3.1 A confused terminology
  • 6.3.2 A formal classification of peat landslides (Dykes and Warburton, 2007)
  • 6.4 Relationship between landslide type and peat stratigraphy
  • 6.5 Impacts of peat landslides
  • 6.5.1 Example: Cashlaundrumlahan peat flow, Derrybrien, Ireland (October 2003)
  • 6.5.2 Example: failure during road construction, North Pennines, UK (August 2006)
  • 6.6 The runout of peat landslides
  • 6.7 Slope stability analysis of peat landslides and geotechnical properties
  • 6.8 Historical perspective on the frequency of peat landslides
  • 6.9 The future incidence of peat landslides
  • 6.10 Conclusion
  • References
  • 7
  • Rock-snow-ice avalanches
  • 7.1 Introduction
  • 7.2 Rapid mass movements on glaciers
  • 7.2.1 Frequency and distribution
  • 7.2.2 Causes
  • 7.2.3 Evolution
  • 7.3 RSI avalanche propagation
  • 7.3.1 Topographic effects
  • 7.3.2 Motion on low-friction glaciers
  • 7.3.3 Snow and ice content of the granular mass
  • 7.3.4 Melting of ice and snow due to frictional heating
  • 7.3.5 Snow and ice entrainment
  • 7.4 Implications for hazard assessment
  • 7.4.1 Probability of occurrence in time
  • 7.4.2 Zone of possible initiation
  • 7.4.3 Runout prediction
  • 7.5 Conclusions
  • References
  • 8
  • Multiple landslide-damming episodes
  • 8.1 Introduction
  • 8.2 Previous work on landslide dams
  • 8.3 Landslide-dam episodes: lessons from case studies
  • 8.3.1 Wenchuan earthquake (Mw 7.9), China, 2008
  • 8.3.2 Murchison (Buller) earthquake (Mw 7.8), New Zealand, 1929
  • 8.3.3 Typhoon Talas, Japan, 2011
  • 8.4 Discussion
  • 8.5 Conclusions
  • Acknowledgements
  • References
  • 9
  • Rock avalanches onto glaciers
  • 9.1 Introduction
  • 9.2 Processes
  • 9.2.1 Detachment zone and conditions
  • 9.2.1.1 Preparatory factors.
  • 9.2.1.2 Triggering factors
  • 9.2.1.3 Glacier basins and rock avalanches
  • 9.2.2 Supraglacial motion
  • 9.2.2.1 Flowing processes
  • 9.2.2.2 Higher mobility of rock avalanches on glaciers
  • 9.2.3 Rock avalanche deposits and sedimentary properties
  • 9.2.3.1 Deposition onto glacier surface
  • 9.2.3.1.1 Thickness of rock avalanche deposits onto glaciers
  • 9.2.3.1.2 Morphology, sedimentology and macrofabric of rock avalanche carapace
  • 9.2.3.1.3 Matrix particle-size distribution
  • 9.2.3.2 Post-depositional modifications of rock avalanche deposits on glacier
  • 9.2.3.2.1 Reworking of rock avalanche debris
  • 9.2.3.2.2 Modification of the pattern of supraglacial deposits
  • 9.2.3.3 Deposition of rock avalanches outside the glacier
  • 9.3 Consequences
  • 9.3.1 Rock avalanche contribution to supraglacial debris covers
  • 9.3.2 Glacier dynamics in relation to rock avalanche deposits
  • 9.3.2.1 Glacier advance and velocity change due to rock avalanches
  • 9.3.2.2 Reduced ablation due to rock avalanche deposits
  • 9.3.2.3 Effect of load increase and sub-glacial drainage change
  • 9.3.3 Atypical moraine complexes and implications for paleo-glacial sequences/reconstruction
  • 9.3.4 Post-landslide developments and hazards
  • 9.4 Case studies
  • 9.4.1 Recent rock avalanches onto glacier in Aoraki/Mount Cook area, New Zealand
  • 9.4.2 The 1991 Chillinji Glacier rock avalanche (western Karakoram)
  • 9.4.3 Holocene Horcones mass flow, Cerro Aconcagua (6961m asl), Argentina
  • 9.5 Concluding remarks
  • References
  • 10
  • Paleo-landslides
  • 10.1 Introduction
  • 10.2 Significance of paleo-landslides
  • 10.3 Recognition and mapping
  • 10.3.1 Role of geomorphology
  • 10.3.2 Role of stratigraphy and sedimentology
  • 10.4 Dating paleo-landslides
  • 10.4.1 Dendrochronology
  • 10.4.2 Radiocarbon dating
  • 10.4.3 Terrestrial cosmogenic nuclide dating.
  • 10.5 Temporal bias
  • 10.6 Role in landscape evolution
  • 10.7 Risk assessment
  • 10.7.1 Oso
  • 10.7.2 Cheekye Fan
  • 10.8 Conclusion
  • References
  • 11
  • Remote sensing of landslide motion with emphasis on satellite multi-temporal interferometry applications: an o ...
  • 11.1 Introduction
  • 11.2 Brief introduction to DInSAR and Multi-Temporal Interferometry
  • 11.2.1 DInSAR and MTI
  • 11.2.2 Technical and practical aspects of MTI applied to landslide motion detection and monitoring
  • 11.2.2.1 Stable reference point selection
  • 11.2.2.2 Surface displacement/deformation model
  • 11.2.2.3 Phase aliasing problem and maximum detectable motion velocity
  • 11.2.2.4 3D surface displacement versus LOS measurement from MTI
  • 11.2.2.5 Precision and quality assessment of MTI measurements
  • 11.2.2.6 MTI processing and post-processing issues
  • 11.3 Examples of different scale MTI applications to landslide motion detection and monitoring
  • 11.3.1 Reliability of MTI results
  • 11.3.2 Examples of MTI application from the Italian Alps: issues of radar visibility and sensitivity to down-slope movements
  • 11.3.2.1 Issues of radar visibility and sensitivity to down-slope movements
  • 11.3.2.2 MTI application example from the Italian Alps
  • 11.3.3 Examples of MTI application from the Apennine Mountains: instability of hilltop towns
  • 11.3.3.1 Characteristics of the study area and previous MTI investigations
  • 11.3.3.2 Instability of hilltop towns in the Daunia Apennines
  • 11.3.3.2.1 The hilltop town of Bovino
  • 11.3.3.2.2 The hilltop town of Volturino
  • 11.3.3.2.3 The hillside town of Pietramontecorvino
  • 11.3.3.3 Utility of MTI for monitoring slope/ground instability hazards in urban/peri-urban areas
  • 11.3.4 Example of MTI application from the mountains of Haiti
  • 11.3.5 Example of GBInSAR application from the Southern Apennines, Italy.