Cargando…

Micro and nanolignin in aqueous dispersions and polymers : interactions, properties, and applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Puglia, Debora
Formato: eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2022.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Micro and Nanolignin in Aqueous Dispersions and Polymers
  • Micro and Nanolignin in Aqueous Dispersions and Polymers: Interactions, Properties, and Applications
  • Copyright
  • Contents
  • Contributors
  • Contributors
  • Preface
  • 1
  • Microlignin: where to find it and how to recover it
  • 1. Introduction
  • 2. Sources of lignin
  • 3. Lignin fractionation processes
  • 3.1 Industrial scale processes
  • 3.2 Lab-scale processes
  • 4. Lignin based micro-particles
  • 5. Conclusions
  • References
  • 2
  • Color characteristics of microlignin
  • 1. Introduction
  • 2. Chromophores in lignin
  • 2.1 Coniferaldehyde and ferulic acid
  • 2.2 Stilbenes and their unsaturated groups
  • 2.3 Condensation products
  • 2.4 Quinones and quinonemethides
  • 2.5 Metal and hydrogen-bonded complexes
  • 3. Color evaluation of lignin
  • 3.1 ISO brightness
  • 3.2 CIE Lab
  • 3.3 Munsell color system
  • 3.4 UV-Vis and diffuse reflectance spectroscopy
  • 3.5 Other color evaluation methods of lignin
  • 4. Color reduction of lignin
  • 4.1 Traditional bleaching and lignin degradation
  • 4.2 Auxochromic effect of phenolic hydroxyl and methoxy
  • 4.3 Fractionation contributions to the color of lignin
  • 4.4 Micromorphology influence on the color of lignin
  • 5. Color-dependent utilization of lignin
  • 5.1 Lignin-based sunscreens
  • 5.2 Lignin-based dispersants
  • 5.3 Lignin-based inks
  • 6. Outlook
  • Acknowledgments
  • References
  • 3
  • Lignin depolymerization for monomers production by sustainable processes
  • 1. Introduction
  • 2. Depolymerization methodologies
  • 2.1 Reductive depolymerization
  • 2.2 Oxidative depolymerization
  • 2.3 Acid-/base-catalyzed depolymerization
  • 2.3.1 Acid-catalyzed depolymerization
  • 2.3.2 Base-catalyzed depolymerization
  • 2.4 Thermal depolymerization
  • 2.5 Electrochemical depolymerization
  • 2.6 Photocatalytic depolymerization.
  • 2.7 One-pot depolymerization
  • 2.8 Biological depolymerization
  • 3. Conclusions
  • References
  • 4
  • Nanolignin: extraction methodologies and their impact assessment
  • 1. Introduction
  • 2. Methodologies for nanolignin extraction
  • 2.1 Precipitation-based methods
  • 2.2 Nonprecipitation methods
  • 3. Impact assessment of nanolignin extraction
  • 4. Conclusions
  • References
  • 5
  • Lignin-based composites for packaging applications
  • List of abbreviations
  • 1. Lignin-based additives for packaging
  • 1.1 Structure-property relationship
  • 1.1.1 Influence of biomass origin on lignin structure
  • 1.1.2 Influence of biomass pulping on lignin structure
  • 1.2 Antioxidant activity of isolated lignins
  • 1.3 Antimicrobial capacity of isolated lignins
  • 2. Lignin-derived composites for packaging
  • 2.1 Polysaccharide/lignin composites
  • 2.2 Protein/lignin composites
  • 2.3 Composites with artificial polymers
  • 3. Future perspectives
  • 3.1 Low-input crops-a promising biorefinery feedstock
  • 3.2 Multivariate analysis for biomass origin specification and lignin quality assurance
  • References
  • 6
  • Lignin as a flame retardant for biopolymers
  • 1. Introduction
  • 2. Flame-retardant character of raw lignin
  • 3. Functions of lignin in flame-retardant systems
  • 3.1 Unmodified lignin
  • 3.2 Functionalized lignin
  • 3.2.1 Functionalized lignin in thermoplastic polymers
  • 3.2.2 Functionalized lignin in thermosetting polymers
  • 4. Nanolignin as a flame retardant for polymers
  • 5. Conclusions
  • References
  • 7
  • Manufacture and application of lignin-based carbon fibers and lignin-based carbon nanofibers
  • 1. Introduction
  • 2. From lignin to biocarbon
  • 2.1 Production of lignin-based carbon fibers
  • 2.2 Carbon aerogels
  • 3. Important characteristics
  • 4. Future applications of lignin-based carbon
  • 4.1 Composite reinforcement
  • 4.2 Adsorbent.
  • 4.3 Electrodes for supercapacitors
  • 5. Conclusion
  • References
  • 8
  • The use of lignin as a precursor for carbon fiber-reinforced composites
  • 1. Introduction
  • 1.1 History of lignin-based carbon fiber development
  • 2. Lignin-based CF production
  • 2.1 Lignin PF feedstock and its extraction
  • 2.2 Fiber spinning
  • 2.2.1 Melt spinning
  • 2.2.2 Wet spinning
  • 2.3 PF stabilization
  • 2.4 PF carbonization
  • 2.5 CF surface treatment for deployment in composite materials
  • 3. Key structure-property relationships determining lignin CF properties
  • 4. Conclusions
  • References
  • 9
  • Effect of lignin on bio-based/oil-based polymer blends
  • 1. The effect of lignin on polymer blends
  • 1.1 The effect of lignin on bio-based polymer blends
  • 1.1.1 Polysaccharide/lignin
  • 1.1.2 Natural rubber/lignin
  • 1.1.3 Protein/lignin
  • 1.1.4 Polylactic acid/lignin
  • 1.2 The effect of lignin on oil-based polymer blends
  • 1.2.1 Polyester/lignin
  • 1.2.2 Polyether/lignin
  • 1.2.3 Polyethylene/lignin
  • 1.2.4 Polypropylene/lignin
  • 1.3 The effect of lignin on bio-based/oil-based polymer blends
  • 1.3.1 Polypropylene/polylactic acid/lignin
  • 1.3.2 The effect of lignin addition to the polypropylene/polylactic acid/lignin blends
  • 1.3.3 The effect of lignin size on the polypropylene/polylactic acid/lignin blends
  • 1.3.4 The effect of modified lignin on the polypropylene/polylactic acid/lignin blends
  • 2. Conclusion
  • References
  • 10
  • Polymeric composites and nanocomposites containing lignin: structure and applications
  • 1. Use of lignin in polymeric composites and nanocomposites
  • 1.1 Structure and applications
  • 2. Food packaging applications
  • 3. UV absorption
  • 4. Environmental remediation
  • 5. Drug delivery and biomedical applications
  • 6. Agriculture and crop protection
  • 7. Photocatalysis and photovoltaics
  • 8. Conclusions
  • References.
  • 11
  • Lignin for metal ion remediation in aqueous systems
  • 1. Introduction
  • 2. Metals: definition and characteristics
  • 3. Metals toxicity
  • 3.1 Copper
  • 3.2 Cadmium
  • 3.3 Chromium
  • 3.4 Lead
  • 3.5 Arsenic
  • 3.6 Mercury
  • 3.7 Zinc
  • 3.8 Nickel
  • 4. Lignin and remediation technologies for MTE polluted water
  • 4.1 Ion exchange
  • 4.2 Chemical precipitation
  • 4.3 Chemical coagulation
  • 4.4 Filtration with membranes
  • 4.5 Electrochemical treatments
  • 4.6 Phytoremediation
  • 4.7 Adsorbents
  • 5. Conclusions
  • References
  • 12
  • Lignin nanoparticles in coatings for wood preservation
  • 1. Introduction
  • 1.1 Wood decay
  • 1.2 Wood preservation-an industrial perspective
  • 2. Bio-based wood preservation strategies
  • 3. Lignin and lignin nanoparticles in wood preservation-current examples
  • 3.1 Lignin in coating formulations
  • 3.2 Lignin as a nanocarrier material
  • 4. Conclusions and future perspectives
  • References
  • 13
  • Chemical modification and functionalization of lignin nanoparticles
  • 1. Introduction
  • 2. Formation and solvent stability of lignin nanoparticles
  • 3. Covalent modification before nanoparticle synthesis
  • 3.1 Esterification
  • 3.2 Etherification
  • 3.3 Amination
  • 3.4 Other chemical modifications
  • 3.5 Lignin-based polymeric materials: new players in the LNP arena
  • 3.5.1 PLNPs derived from lignin-based polymeric materials for drug delivery applications
  • 3.5.2 PLNPs derived from lignin-based polymeric materials in other applications
  • 4. Covalent modification in dispersion state
  • 4.1 EDC/NHS coupling chemistry for amide bond synthesis in dispersion state
  • 4.2 Coprecipitation with an epoxy cross-linker for intraparticle curing
  • 5. Noncovalent modification
  • 5.1 Adsorption
  • 5.2 Hybrid and composite particles
  • 6. Other approaches to modified and stabilized particles
  • 7. Future perspectives.