Cargando…

Bark beetle management, ecology, and climate change /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Gandhi, Kamal J. K. (Editor ), Hofstetter, Richard W. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, [2022]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_on1281584604
003 OCoLC
005 20231120010612.0
006 m o d
007 cr |n|||||||||
008 211031s2022 enk ob 001 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d OPELS  |d N$T  |d OCLCO  |d SFB  |d OCLCO  |d UKMGB  |d OCLCQ  |d K6U  |d OCLCQ  |d WAU  |d OCLCQ 
015 |a GBC237752  |2 bnb 
016 7 |a 020388612  |2 Uk 
019 |a 1281655604  |a 1281766219 
020 |a 9780128224403  |q (electronic bk.) 
020 |a 0128224401  |q (electronic bk.) 
020 |z 9780128221457 
035 |a (OCoLC)1281584604  |z (OCoLC)1281655604  |z (OCoLC)1281766219 
050 4 |a SB945.B3 
082 0 4 |a 595.768  |2 23 
245 0 0 |a Bark beetle management, ecology, and climate change /  |c edited by Kamal J.K. Gandhi and Richard W. Hofstetter. 
264 1 |a London :  |b Academic Press,  |c [2022] 
300 |a 1 online resource (xxvii, 408 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Front Cover -- Bark Beetle Management, Ecology, and Climate Change -- Copyright -- Dedication -- Contents -- Contributors -- Introduction: Bark beetles, management, and climate change -- 1. Background -- 2. Goals of the book -- References -- Acknowledgments -- Part I: Insect distributions and novel hosts -- Chapter 1: Climate change and invasions by nonnative bark and ambrosia beetles -- 1. Introduction -- 2. Key terms and concepts -- 3. Factors predisposing bark and ambrosia beetles as invaders -- 4. Transportation and arrival -- 5. Establishment and population growth -- 6. Spread of established populations -- 7. Impact of climate change on fungal associates -- 8. Consequences of extreme weather events on invasions -- 8.1. Extreme meteorological events causing sudden increases in timber stocks-The 2018 drought and storms in Europe -- 8.2. The Siberian heat wave: Movement of conifer timber from Asia to Europe -- 9. Conclusions and future directions -- Acknowledgments -- References -- Chapter 2: Complexities in predicting mountain pine beetle and spruce beetle response to climate change -- 1. Introduction -- 2. Development rates and thresholds -- 3. Diapause -- 3.1. Prepupal diapause -- 3.2. Teneral adult diapause -- 3.3. Diapause effects on lifecycle timing -- 4. Cold hardening -- 5. Potential climate change effects on population persistence and expansion -- 6. Management implications of climate change-affected population dynamics -- 7. Conclusions -- Acknowledgments -- References -- Chapter 3: Responses and modeling of southern pine beetle and its host pines to climate change -- 1. Introduction -- 2. Factors influencing the geographic range of southern pine beetle -- 2.1. Climate -- 2.2. Associates -- 2.3. Host trees -- 2.3.1. Pine hosts of southern pine beetle -- 2.3.2. Pine host responses to climate change. 
505 8 |a 2.3.3. Interactions between host trees and southern pine beetle under climate change -- 3. Management and monitoring data -- 4. Climate change, range expansion, and predictive modeling of southern pine beetle distribution -- 4.1. The past and present of predictive modeling and outbreak dynamics -- 4.1.1. Population approaches -- 4.1.2. Integrating space into population modeling -- 4.2. The problem of scale -- 4.3. The problem of uncertainty -- 4.3.1. Systematic error -- 4.3.2. Measurement error -- 4.3.3. Uncertainty in variables -- 4.3.4. Uncertainty in model structure -- 5. Conclusions -- Acknowledgments -- References -- Part II: Interactions of insects with altered host physiology -- Chapter 4: The Eurasian spruce bark beetle in a warming climate: Phenology, behavior, and biotic interactions -- 1. Ips typographus-destructive force and keystone species in Eurasian spruce forests -- 2. Temperature effects on spruce bark beetle phenology and population dynamics -- 2.1. Voltinism, overwintering, and diapause -- 2.2. Temperature dependent spruce bark beetle phenology -- 3. Beetle exploration of landscape and habitat-How climatic conditions and odor sources influence dispersal and host sele ... -- 4. Carbon castles: The formidable defenses of Norway spruce -- 5. Are (drought) stressed spruce trees more susceptible to Ips typographus attack? -- 5.1. Drought manipulation experiments -- 6. The tripartite Norway spruce, Ips typographus, and fungal symbionts system -- 6.1. How do bark beetles overcome the formidable defenses of the host?-The three hypotheses examined -- 7. Bark beetle-Norway spruce interactions in a changing climate-Perspectives for science and management -- Acknowledgments -- References -- Chapter 5: Climate change alters host tree physiology and drives plant-insect interactions in forests of the southweste -- 1. Introduction. 
505 8 |a 2. Impacts of climate drivers on plant-insect interactions in southwestern USA forest ecosystems -- 3. What are the gaps in our understanding of plant-insect interactions under climate change in southwestern forests? -- 4. Conclusions -- Acknowledgments -- References -- Further reading -- Chapter 6: Relationships between drought, coniferous tree physiology, and Ips bark beetles under climatic changes -- 1. Introduction -- 2. Results from literature linking Ips bark beetle outbreaks and drought -- 3. Economic and ecological consequences of drought and Ips beetle outbreaks on conifers -- 4. Anticipated changes in conifer physiology due to climate change -- 4.1. Prolonged drought stress affects host investment in growth and differentiation -- 4.2. Drought and changes in conifer production of defensive compounds -- 5. Insect-plant interactions in host trees experiencing drought stress -- 5.1. Host water deficit severity (intermittent vs. continuous water stress) governs subsequent level of damage by bark be ... -- 5.2. Drought-stressed hosts may attract Ips bark beetles -- 5.3. Compromised host defenses and changes in phloem environment caused by drought and heat stress facilitate Ips beetle ... -- 6. Ips-drought interactions: A conceptual framework -- 7. Research gaps -- 8. Conclusions and future research directions -- Acknowledgments -- References -- Part III: Interactions of insects with altered disturbance regimes -- Chapter 7: Interactions between catastrophic wind disturbances and bark beetles in forested ecosystems -- 1. Introduction -- 1.1. Windthrow as a natural disturbance agent -- 1.2. Windthrow and subcortical beetles -- 1.3. Objectives of the chapter -- 2. Interactions of wind disturbance with bark beetles -- 2.1. At the tree- and stand levels -- 2.2. At the landscape level -- 3. Postwindstorm forest management practices. 
505 8 |a 4. Conceptual model of cross-scale interactions between windthrow and bark beetles -- 5. Conclusions -- Acknowledgments -- References -- Part IV: Ecosystem-level impacts of bark beetle outbreaks due to climate change -- Chapter 8: Bark beetle outbreaks alter biotic components of forested ecosystems -- 1. Introduction -- 1.1. Bark beetles and climate change -- 1.2. Chapter objectives -- 2. Changes to the abiotic forest environment -- 3. Changes to forest structure by bark beetle outbreaks -- 4. Responses of flora following bark beetle outbreaks -- 4.1. Regenerating trees -- 4.1.1. Positive responses -- 4.1.2. Negative responses -- 4.1.3. Neutral responses -- 4.2. Herbs and shrubs -- 4.2.1. Positive responses -- 4.2.2. Negative responses -- 4.2.3. Neutral responses -- 4.3. Mosses -- 5. Responses of fauna following bark beetle outbreaks -- 5.1. Arthropods -- 5.1.1. Positive responses -- 5.1.2. Negative responses -- 5.2. Birds -- 5.2.1. Positive responses -- 5.2.2. Negative responses -- 5.2.3. Neutral responses -- 5.3. Mammals -- 5.3.1. Positive responses -- 5.3.2. Negative responses -- 5.3.3. Variable responses -- 5.4. Reptiles -- 5.4.1. Positive responses -- 5.4.2. Negative responses -- 6. Responses of soil microbiota following bark beetle outbreaks -- 7. Conclusions -- Acknowledgments -- References -- Chapter 9: Eastern larch beetle, a changing climate, and impacts to northern tamarack forests -- 1. Introduction -- 2. Host species -- 3. Predisposing factors associated with tree-killing activity of eastern larch beetles -- 4. Biology and ecology of eastern larch beetle -- 4.1. Identification -- 4.2. Host colonization and chemical ecology -- 4.3. Fungal associates -- 4.4. Characteristics of tamaracks infested by eastern larch beetles -- 4.5. Mating behavior -- 4.6. Oviposition and brood development -- 4.7. Life cycle -- 4.8. First brood. 
505 8 |a 4.9. Second brood -- 4.10. Third brood -- 5. Shifts to bivoltine development in a warming climate -- 5.1. Overwintering biology -- 6. The impact of eastern larch beetle outbreaks on forests -- 6.1. Silvics of eastern larch -- 7. Silvicultural systems of eastern larch -- 7.1. Host selection with respect to tree size -- 7.2. Impacts of eastern larch beetles on tamarack stand structure -- 7.3. Forest management and eastern larch beetle -- 8. Future research needs -- References -- Part V: Multitrophic changes mediated via climate change -- Chapter 10: Effects of rising temperatures on ectosymbiotic communities associated with bark and ambrosia beetles -- 1. Introduction -- 2. Functions and interactions of ectosymbionts within beetle-infested trees -- 2.1. Ectosymbiotic fungi -- 2.2. Ectosymbiotic bacteria -- 2.3. Ectosymbiotic mites -- 2.4. Ectosymbiotic nematodes -- 2.5. Whole community interactions -- 3. Ectosymbiotic communities and their relationship with climate variables -- 4. Direct effects of temperature of ectosymbionts -- 4.1. Direct effects of temperature on growth and reproduction of fungi -- 4.2. Direct effects of temperature on the growth and reproduction of bacteria -- 4.3. Direct effects of temperature on growth and reproduction of mites -- 4.4. Direct effects of temperature on growth and reproduction of nematodes -- 5. Effects of climate change on tree condition (secondary defenses, nutrition, moisture) and the symbiotic community -- 6. Projected effects of climate (temperature regimes, drought) and changes to the ectosymbiotic community on bark beetle ... -- 7. Conceptual model -- 8. Testable hypotheses -- 9. Critical research needs -- References -- Part VI: Management of bark beetles in altered forests and climate conditions. 
650 0 |a Bark beetles  |x Climatic factors. 
650 0 |a Bark beetles  |x Ecology. 
650 6 |a Scolytes de l'�ecorce  |0 (CaQQLa)201-0007287  |x Facteurs climatiques.  |0 (CaQQLa)201-0373899 
650 6 |a Scolytes de l'�ecorce  |0 (CaQQLa)201-0007287  |x �Ecologie.  |0 (CaQQLa)201-0378920 
700 1 |a Gandhi, Kamal J. K.,  |e editor. 
700 1 |a Hofstetter, Richard W.,  |e editor. 
776 0 8 |i Print version:  |z 0128221453  |z 9780128221457  |w (OCoLC)1241443276 
776 0 8 |i Print version:  |t BARK BEETLE MANAGEMENT, ECOLOGY, AND CLIMATE CHANGE.  |d [S.l.] : ELSEVIER ACADEMIC PRESS, 2021  |z 0128221453  |w (OCoLC)1241443276 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128221457  |z Texto completo