Cargando…

Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Leal-Junior, Arnaldo (Autor), Frizera-Neto, Anselmo (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London ; San Diego, CA : Academic Press, an imprint of Elsevier, [2022]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics
  • Copyright
  • Contents
  • Preface
  • Part I Introduction to soft robotics and rehabilitation systems
  • 1 Introduction and overview of wearable technologies
  • 1.1 Motivation
  • 1.2 Wearable robotics and assistive devices
  • 1.3 Wearable sensors and monitoring devices
  • 1.4 Outline of the book
  • References
  • 2 Soft wearable robots
  • 2.1 Soft robots: definitions and (bio)medical applications
  • 2.2 Soft robots for rehabilitation and functional compensation
  • 2.3 Human-in-the-loop design of soft structures and healthcare systems
  • 2.3.1 Human-in-the-loop systems
  • 2.3.2 Human-in-the-loop applications and current trends
  • 2.3.3 Human-in-the-loop design in soft wearable robots
  • 2.4 Current trends and future approaches in wearable soft robots
  • References
  • 3 Gait analysis: overview, trends, and challenges
  • 3.1 Human gait
  • 3.2 Gait cycle: definitions and phases
  • 3.2.1 Kinematics and dynamics of human gait
  • 3.3 Gait analysis systems: fixed systems and wearable sensors
  • References
  • Part II Introduction to optical fiber sensing
  • 4 Optical fiber fundaments and overview
  • 4.1 Historical perspective
  • 4.2 Light propagation in optical waveguides
  • 4.3 Optical fiber properties and types
  • 4.4 Passive and active components in optical fiber systems
  • 4.4.1 Light sources
  • 4.4.2 Photodetectors
  • 4.4.3 Optical couplers
  • 4.4.4 Optical circulators
  • 4.4.5 Spectrometers and optical spectrum analyzers
  • 4.5 Optical fiber fabrication and connection methods
  • 4.5.1 Fabrication methods
  • 4.5.2 Optical fiber connectorization approaches
  • References
  • 5 Optical fiber materials
  • 5.1 Optically transparent materials
  • 5.2 Viscoelasticity overview
  • 5.3 Dynamic mechanical analysis in polymer optical fibers
  • 5.3.1 DMA on PMMA solid core POF.
  • 5.3.2 Dynamic characterization of CYTOP fibers
  • 5.4 Influence of optical fiber treatments on polymer properties
  • References
  • 6 Optical fiber sensing technologies
  • 6.1 Intensity variation sensors
  • 6.1.1 Macrobending sensors
  • 6.1.2 Light coupling-based sensors
  • 6.1.3 Multiplexed intensity variation sensors
  • 6.2 Interferometers
  • 6.3 Gratings-based sensors
  • 6.4 Compensation techniques and cross-sensitivity mitigation in optical fiber sensors
  • References
  • Part III Optical fiber sensors in rehabilitation systems
  • 7 Wearable robots instrumentation
  • 7.1 Optical fiber sensors on exoskeleton's instrumentation
  • 7.2 Exoskeleton's angle assessment applications with intensity variation sensors
  • 7.2.1 Case study: active lower limb orthosis for rehabilitation (ALLOR)
  • 7.2.2 Case study: modular exoskeleton
  • 7.3 Human-robot interaction forces assessment with Fiber Bragg Gratings
  • 7.4 Interaction forces and microclimate assessment with intensity variation sensors
  • References
  • 8 Smart structures and textiles for gait analysis
  • 8.1 Optical fiber sensors for kinematic parameters assessment
  • 8.1.1 Intensity variation-based sensors for joint angle assessment
  • 8.1.2 Fiber Bragg gratings sensors with tunable filter interrogation for joint angle assessment
  • 8.2 Instrumented insole for plantar pressure distribution and ground reaction forces evaluation
  • 8.2.1 Fiber Bragg grating insoles
  • 8.2.2 Multiplexed intensity variation-based sensors for smart insoles
  • 8.3 Spatiotemporal parameters estimation using integrated optical fiber sensors
  • References
  • 9 Soft robotics and compliant actuators instrumentation
  • 9.1 Series elastic actuators instrumentation
  • 9.1.1 Torque measurement with intensity variation sensors
  • 9.1.2 Torque measurement with intensity variation sensors
  • 9.2 Tendon-driven actuators instrumentation.
  • 9.2.1 Artificial tendon instrumentation with highly flexible optical fibers
  • References
  • Part IV Case studies and additional applications
  • 10 Wearable multifunctional smart textiles
  • 10.1 Optical fiber embedded-textiles for physiological parameters monitoring
  • 10.1.1 Breath and heart rates monitoring
  • 10.1.2 Body temperature assessment
  • 10.2 Smart textile for multiparameter sensing and activities monitoring
  • 10.3 Optical fiber-embedded smart clothing for mechanical perturbation and physical interaction detection
  • References
  • 11 Smart walker's instrumentation and development with compliant optical fiber sensors
  • 11.1 Smart walkers' technology overview
  • 11.2 Smart walker embedded sensors for physiological parameters assessment
  • 11.2.1 System description
  • 11.2.2 Preliminary validation
  • 11.2.3 Experimental validation
  • 11.3 Multiparameter quasidistributed sensing in a smart walker structure
  • 11.3.1 Experimental validation
  • 11.3.2 Experimental validation
  • References
  • 12 Optical fiber sensors applications for human health
  • 12.1 Robotic surgery
  • 12.2 Biosensors
  • 12.2.1 Introduction to biosensing
  • 12.2.2 Background on optical fiber biosensing working principles
  • 12.2.2.1 Evanescent wave
  • 12.2.2.2 SPR and LSPR
  • 12.2.2.3 Gratings-assisted sensors
  • 12.2.2.4 Other fibers
  • 12.2.3 Biofunctionalization strategies for fiber immunosensors
  • 12.2.3.1 Bare silica optical fiber
  • 12.2.3.2 Polymer optical fiber
  • 12.2.3.3 Metal coated fibers
  • 12.2.3.4 Carbon-based materials as fiber coating
  • 12.2.3.5 Oxide semiconductors
  • 12.2.4 Immunosensing applications in medical biomarkers detection
  • 12.2.4.1 Cancer biomarkers
  • 12.2.4.2 Cardiac biomarkers
  • 12.2.4.3 Cortisol biomarker
  • 12.2.4.4 Cortisol biomarker
  • References
  • 13 Conclusions and outlook
  • 13.1 Summary
  • 13.2 Final remarks and outlook.
  • Index
  • Back Cover.