Cargando…

Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Leal-Junior, Arnaldo (Autor), Frizera-Neto, Anselmo (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London ; San Diego, CA : Academic Press, an imprint of Elsevier, [2022]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1281581381
003 OCoLC
005 20231120010612.0
006 m o d
007 cr cnu---unuuu
008 211031s2022 enka ob 001 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d UKMGB  |d OCLCF  |d N$T  |d UKAHL  |d YDXIT  |d NLSHB  |d OPELS  |d CNO  |d OCLCQ  |d OCLCO  |d SFB  |d OCLCQ  |d OCLCO 
015 |a GBC1F4389  |2 bnb 
016 7 |a 020328028  |2 Uk 
019 |a 1281141946  |a 1281241731 
020 |a 9780323903493  |q (electronic book) 
020 |a 0323903495  |q (electronic book) 
020 |z 9780323859523 
020 |z 0323859526 
035 |a (OCoLC)1281581381  |z (OCoLC)1281141946  |z (OCoLC)1281241731 
050 4 |a TA1815  |b .L43 2022eb 
082 0 4 |a 681.25  |2 23 
100 1 |a Leal-Junior, Arnaldo,  |e author. 
245 1 0 |a Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics /  |c Arnaldo Leal-Junior, Anselmo Frizera-Neto. 
264 1 |a London ;  |a San Diego, CA :  |b Academic Press, an imprint of Elsevier,  |c [2022] 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from digital title page (viewed on December 29, 2021). 
505 0 |a Front Cover -- Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics -- Copyright -- Contents -- Preface -- Part I Introduction to soft robotics and rehabilitation systems -- 1 Introduction and overview of wearable technologies -- 1.1 Motivation -- 1.2 Wearable robotics and assistive devices -- 1.3 Wearable sensors and monitoring devices -- 1.4 Outline of the book -- References -- 2 Soft wearable robots -- 2.1 Soft robots: definitions and (bio)medical applications -- 2.2 Soft robots for rehabilitation and functional compensation -- 2.3 Human-in-the-loop design of soft structures and healthcare systems -- 2.3.1 Human-in-the-loop systems -- 2.3.2 Human-in-the-loop applications and current trends -- 2.3.3 Human-in-the-loop design in soft wearable robots -- 2.4 Current trends and future approaches in wearable soft robots -- References -- 3 Gait analysis: overview, trends, and challenges -- 3.1 Human gait -- 3.2 Gait cycle: definitions and phases -- 3.2.1 Kinematics and dynamics of human gait -- 3.3 Gait analysis systems: fixed systems and wearable sensors -- References -- Part II Introduction to optical fiber sensing -- 4 Optical fiber fundaments and overview -- 4.1 Historical perspective -- 4.2 Light propagation in optical waveguides -- 4.3 Optical fiber properties and types -- 4.4 Passive and active components in optical fiber systems -- 4.4.1 Light sources -- 4.4.2 Photodetectors -- 4.4.3 Optical couplers -- 4.4.4 Optical circulators -- 4.4.5 Spectrometers and optical spectrum analyzers -- 4.5 Optical fiber fabrication and connection methods -- 4.5.1 Fabrication methods -- 4.5.2 Optical fiber connectorization approaches -- References -- 5 Optical fiber materials -- 5.1 Optically transparent materials -- 5.2 Viscoelasticity overview -- 5.3 Dynamic mechanical analysis in polymer optical fibers -- 5.3.1 DMA on PMMA solid core POF. 
505 8 |a 5.3.2 Dynamic characterization of CYTOP fibers -- 5.4 Influence of optical fiber treatments on polymer properties -- References -- 6 Optical fiber sensing technologies -- 6.1 Intensity variation sensors -- 6.1.1 Macrobending sensors -- 6.1.2 Light coupling-based sensors -- 6.1.3 Multiplexed intensity variation sensors -- 6.2 Interferometers -- 6.3 Gratings-based sensors -- 6.4 Compensation techniques and cross-sensitivity mitigation in optical fiber sensors -- References -- Part III Optical fiber sensors in rehabilitation systems -- 7 Wearable robots instrumentation -- 7.1 Optical fiber sensors on exoskeleton's instrumentation -- 7.2 Exoskeleton's angle assessment applications with intensity variation sensors -- 7.2.1 Case study: active lower limb orthosis for rehabilitation (ALLOR) -- 7.2.2 Case study: modular exoskeleton -- 7.3 Human-robot interaction forces assessment with Fiber Bragg Gratings -- 7.4 Interaction forces and microclimate assessment with intensity variation sensors -- References -- 8 Smart structures and textiles for gait analysis -- 8.1 Optical fiber sensors for kinematic parameters assessment -- 8.1.1 Intensity variation-based sensors for joint angle assessment -- 8.1.2 Fiber Bragg gratings sensors with tunable filter interrogation for joint angle assessment -- 8.2 Instrumented insole for plantar pressure distribution and ground reaction forces evaluation -- 8.2.1 Fiber Bragg grating insoles -- 8.2.2 Multiplexed intensity variation-based sensors for smart insoles -- 8.3 Spatiotemporal parameters estimation using integrated optical fiber sensors -- References -- 9 Soft robotics and compliant actuators instrumentation -- 9.1 Series elastic actuators instrumentation -- 9.1.1 Torque measurement with intensity variation sensors -- 9.1.2 Torque measurement with intensity variation sensors -- 9.2 Tendon-driven actuators instrumentation. 
505 8 |a 9.2.1 Artificial tendon instrumentation with highly flexible optical fibers -- References -- Part IV Case studies and additional applications -- 10 Wearable multifunctional smart textiles -- 10.1 Optical fiber embedded-textiles for physiological parameters monitoring -- 10.1.1 Breath and heart rates monitoring -- 10.1.2 Body temperature assessment -- 10.2 Smart textile for multiparameter sensing and activities monitoring -- 10.3 Optical fiber-embedded smart clothing for mechanical perturbation and physical interaction detection -- References -- 11 Smart walker's instrumentation and development with compliant optical fiber sensors -- 11.1 Smart walkers' technology overview -- 11.2 Smart walker embedded sensors for physiological parameters assessment -- 11.2.1 System description -- 11.2.2 Preliminary validation -- 11.2.3 Experimental validation -- 11.3 Multiparameter quasidistributed sensing in a smart walker structure -- 11.3.1 Experimental validation -- 11.3.2 Experimental validation -- References -- 12 Optical fiber sensors applications for human health -- 12.1 Robotic surgery -- 12.2 Biosensors -- 12.2.1 Introduction to biosensing -- 12.2.2 Background on optical fiber biosensing working principles -- 12.2.2.1 Evanescent wave -- 12.2.2.2 SPR and LSPR -- 12.2.2.3 Gratings-assisted sensors -- 12.2.2.4 Other fibers -- 12.2.3 Biofunctionalization strategies for fiber immunosensors -- 12.2.3.1 Bare silica optical fiber -- 12.2.3.2 Polymer optical fiber -- 12.2.3.3 Metal coated fibers -- 12.2.3.4 Carbon-based materials as fiber coating -- 12.2.3.5 Oxide semiconductors -- 12.2.4 Immunosensing applications in medical biomarkers detection -- 12.2.4.1 Cancer biomarkers -- 12.2.4.2 Cardiac biomarkers -- 12.2.4.3 Cortisol biomarker -- 12.2.4.4 Cortisol biomarker -- References -- 13 Conclusions and outlook -- 13.1 Summary -- 13.2 Final remarks and outlook. 
505 8 |a Index -- Back Cover. 
650 0 |a Optical fiber detectors. 
650 0 |a Robotics in medicine. 
650 0 |a Robotics. 
650 2 |a Robotics  |0 (DNLM)D012371 
650 6 |a D�etecteurs �a fibres optiques.  |0 (CaQQLa)201-0246906 
650 6 |a Robotique en m�edecine.  |0 (CaQQLa)201-0272657 
650 6 |a Robotique.  |0 (CaQQLa)201-0110752 
650 7 |a Optical fiber detectors  |2 fast  |0 (OCoLC)fst01046693 
650 7 |a Robotics  |2 fast  |0 (OCoLC)fst01098997 
650 7 |a Robotics in medicine  |2 fast  |0 (OCoLC)fst01099025 
650 7 |a Sensoren (techniek)  |2 nbdbt 
650 7 |a Robotica.  |2 nbdbt 
700 1 |a Frizera-Neto, Anselmo,  |e author. 
776 0 8 |i Print version:  |z 9780323903493 
776 0 8 |i Print version:  |z 0323859526  |z 9780323859523  |w (OCoLC)1256252276 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780323859523  |z Texto completo