|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1281581381 |
003 |
OCoLC |
005 |
20231120010612.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
211031s2022 enka ob 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e rda
|e pn
|c YDX
|d UKMGB
|d OCLCF
|d N$T
|d UKAHL
|d YDXIT
|d NLSHB
|d OPELS
|d CNO
|d OCLCQ
|d OCLCO
|d SFB
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBC1F4389
|2 bnb
|
016 |
7 |
|
|a 020328028
|2 Uk
|
019 |
|
|
|a 1281141946
|a 1281241731
|
020 |
|
|
|a 9780323903493
|q (electronic book)
|
020 |
|
|
|a 0323903495
|q (electronic book)
|
020 |
|
|
|z 9780323859523
|
020 |
|
|
|z 0323859526
|
035 |
|
|
|a (OCoLC)1281581381
|z (OCoLC)1281141946
|z (OCoLC)1281241731
|
050 |
|
4 |
|a TA1815
|b .L43 2022eb
|
082 |
0 |
4 |
|a 681.25
|2 23
|
100 |
1 |
|
|a Leal-Junior, Arnaldo,
|e author.
|
245 |
1 |
0 |
|a Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics /
|c Arnaldo Leal-Junior, Anselmo Frizera-Neto.
|
264 |
|
1 |
|a London ;
|a San Diego, CA :
|b Academic Press, an imprint of Elsevier,
|c [2022]
|
300 |
|
|
|a 1 online resource (1 volume) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Online resource; title from digital title page (viewed on December 29, 2021).
|
505 |
0 |
|
|a Front Cover -- Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics -- Copyright -- Contents -- Preface -- Part I Introduction to soft robotics and rehabilitation systems -- 1 Introduction and overview of wearable technologies -- 1.1 Motivation -- 1.2 Wearable robotics and assistive devices -- 1.3 Wearable sensors and monitoring devices -- 1.4 Outline of the book -- References -- 2 Soft wearable robots -- 2.1 Soft robots: definitions and (bio)medical applications -- 2.2 Soft robots for rehabilitation and functional compensation -- 2.3 Human-in-the-loop design of soft structures and healthcare systems -- 2.3.1 Human-in-the-loop systems -- 2.3.2 Human-in-the-loop applications and current trends -- 2.3.3 Human-in-the-loop design in soft wearable robots -- 2.4 Current trends and future approaches in wearable soft robots -- References -- 3 Gait analysis: overview, trends, and challenges -- 3.1 Human gait -- 3.2 Gait cycle: definitions and phases -- 3.2.1 Kinematics and dynamics of human gait -- 3.3 Gait analysis systems: fixed systems and wearable sensors -- References -- Part II Introduction to optical fiber sensing -- 4 Optical fiber fundaments and overview -- 4.1 Historical perspective -- 4.2 Light propagation in optical waveguides -- 4.3 Optical fiber properties and types -- 4.4 Passive and active components in optical fiber systems -- 4.4.1 Light sources -- 4.4.2 Photodetectors -- 4.4.3 Optical couplers -- 4.4.4 Optical circulators -- 4.4.5 Spectrometers and optical spectrum analyzers -- 4.5 Optical fiber fabrication and connection methods -- 4.5.1 Fabrication methods -- 4.5.2 Optical fiber connectorization approaches -- References -- 5 Optical fiber materials -- 5.1 Optically transparent materials -- 5.2 Viscoelasticity overview -- 5.3 Dynamic mechanical analysis in polymer optical fibers -- 5.3.1 DMA on PMMA solid core POF.
|
505 |
8 |
|
|a 5.3.2 Dynamic characterization of CYTOP fibers -- 5.4 Influence of optical fiber treatments on polymer properties -- References -- 6 Optical fiber sensing technologies -- 6.1 Intensity variation sensors -- 6.1.1 Macrobending sensors -- 6.1.2 Light coupling-based sensors -- 6.1.3 Multiplexed intensity variation sensors -- 6.2 Interferometers -- 6.3 Gratings-based sensors -- 6.4 Compensation techniques and cross-sensitivity mitigation in optical fiber sensors -- References -- Part III Optical fiber sensors in rehabilitation systems -- 7 Wearable robots instrumentation -- 7.1 Optical fiber sensors on exoskeleton's instrumentation -- 7.2 Exoskeleton's angle assessment applications with intensity variation sensors -- 7.2.1 Case study: active lower limb orthosis for rehabilitation (ALLOR) -- 7.2.2 Case study: modular exoskeleton -- 7.3 Human-robot interaction forces assessment with Fiber Bragg Gratings -- 7.4 Interaction forces and microclimate assessment with intensity variation sensors -- References -- 8 Smart structures and textiles for gait analysis -- 8.1 Optical fiber sensors for kinematic parameters assessment -- 8.1.1 Intensity variation-based sensors for joint angle assessment -- 8.1.2 Fiber Bragg gratings sensors with tunable filter interrogation for joint angle assessment -- 8.2 Instrumented insole for plantar pressure distribution and ground reaction forces evaluation -- 8.2.1 Fiber Bragg grating insoles -- 8.2.2 Multiplexed intensity variation-based sensors for smart insoles -- 8.3 Spatiotemporal parameters estimation using integrated optical fiber sensors -- References -- 9 Soft robotics and compliant actuators instrumentation -- 9.1 Series elastic actuators instrumentation -- 9.1.1 Torque measurement with intensity variation sensors -- 9.1.2 Torque measurement with intensity variation sensors -- 9.2 Tendon-driven actuators instrumentation.
|
505 |
8 |
|
|a 9.2.1 Artificial tendon instrumentation with highly flexible optical fibers -- References -- Part IV Case studies and additional applications -- 10 Wearable multifunctional smart textiles -- 10.1 Optical fiber embedded-textiles for physiological parameters monitoring -- 10.1.1 Breath and heart rates monitoring -- 10.1.2 Body temperature assessment -- 10.2 Smart textile for multiparameter sensing and activities monitoring -- 10.3 Optical fiber-embedded smart clothing for mechanical perturbation and physical interaction detection -- References -- 11 Smart walker's instrumentation and development with compliant optical fiber sensors -- 11.1 Smart walkers' technology overview -- 11.2 Smart walker embedded sensors for physiological parameters assessment -- 11.2.1 System description -- 11.2.2 Preliminary validation -- 11.2.3 Experimental validation -- 11.3 Multiparameter quasidistributed sensing in a smart walker structure -- 11.3.1 Experimental validation -- 11.3.2 Experimental validation -- References -- 12 Optical fiber sensors applications for human health -- 12.1 Robotic surgery -- 12.2 Biosensors -- 12.2.1 Introduction to biosensing -- 12.2.2 Background on optical fiber biosensing working principles -- 12.2.2.1 Evanescent wave -- 12.2.2.2 SPR and LSPR -- 12.2.2.3 Gratings-assisted sensors -- 12.2.2.4 Other fibers -- 12.2.3 Biofunctionalization strategies for fiber immunosensors -- 12.2.3.1 Bare silica optical fiber -- 12.2.3.2 Polymer optical fiber -- 12.2.3.3 Metal coated fibers -- 12.2.3.4 Carbon-based materials as fiber coating -- 12.2.3.5 Oxide semiconductors -- 12.2.4 Immunosensing applications in medical biomarkers detection -- 12.2.4.1 Cancer biomarkers -- 12.2.4.2 Cardiac biomarkers -- 12.2.4.3 Cortisol biomarker -- 12.2.4.4 Cortisol biomarker -- References -- 13 Conclusions and outlook -- 13.1 Summary -- 13.2 Final remarks and outlook.
|
505 |
8 |
|
|a Index -- Back Cover.
|
650 |
|
0 |
|a Optical fiber detectors.
|
650 |
|
0 |
|a Robotics in medicine.
|
650 |
|
0 |
|a Robotics.
|
650 |
|
2 |
|a Robotics
|0 (DNLM)D012371
|
650 |
|
6 |
|a D�etecteurs �a fibres optiques.
|0 (CaQQLa)201-0246906
|
650 |
|
6 |
|a Robotique en m�edecine.
|0 (CaQQLa)201-0272657
|
650 |
|
6 |
|a Robotique.
|0 (CaQQLa)201-0110752
|
650 |
|
7 |
|a Optical fiber detectors
|2 fast
|0 (OCoLC)fst01046693
|
650 |
|
7 |
|a Robotics
|2 fast
|0 (OCoLC)fst01098997
|
650 |
|
7 |
|a Robotics in medicine
|2 fast
|0 (OCoLC)fst01099025
|
650 |
|
7 |
|a Sensoren (techniek)
|2 nbdbt
|
650 |
|
7 |
|a Robotica.
|2 nbdbt
|
700 |
1 |
|
|a Frizera-Neto, Anselmo,
|e author.
|
776 |
0 |
8 |
|i Print version:
|z 9780323903493
|
776 |
0 |
8 |
|i Print version:
|z 0323859526
|z 9780323859523
|w (OCoLC)1256252276
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780323859523
|z Texto completo
|