|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1281242068 |
003 |
OCoLC |
005 |
20231120010612.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
211030s2022 enk o 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d OPELS
|d OCLCF
|d N$T
|d OCLCO
|d OCLCQ
|d OCLCO
|d K6U
|d SFB
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1281133747
|a 1281582628
|
020 |
|
|
|a 9780128210659
|q (electronic bk.)
|
020 |
|
|
|a 0128210656
|q (electronic bk.)
|
020 |
|
|
|z 9780128210642
|
035 |
|
|
|a (OCoLC)1281242068
|z (OCoLC)1281133747
|z (OCoLC)1281582628
|
050 |
|
4 |
|a TK1087
|
082 |
0 |
4 |
|a 621.31244
|2 23
|
100 |
1 |
|
|a Yin, Huiming.
|
245 |
1 |
0 |
|a Building integrated photovoltaic thermal systems :
|b fundamentals, designs and applications /
|c Huiming Yin, Mehdi Zadshir and Frank Pao.
|
260 |
|
|
|a London :
|b Academic Press,
|c [2022]
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a IFC -- Half title -- Title -- Copyright -- Contents -- Preface -- Acknowledgements -- Dedication -- Chapter 1 Introduction -- 1.1 Background -- 1.2 Solar energy harvesting methods -- 1.2.1 Photovoltaic utilization -- 1.2.2 Thermoelectric utilization -- 1.2.3 Heat harvesting -- 1.2.4 Hybrid solar panels -- 1.3 Challenges and opportunities of solar panels -- 1.4 Building integrated photovoltaic and building integrated photovoltaic thermal systems -- 1.5 Solar energy industry in the United States and the world -- 1.6 Scope of this book -- 1.7 Two building integrated photovoltaic thermal systems -- 1.7.1 Building an integrated thermal electric roofing system -- 1.7.2 Building integrated photovoltaic thermal solar roof -- 1.8 Case study: Active Energy Building -- 1.8.1 Building innovation for architecture in motion -- 1.8.2 Structure design and optimization -- 1.8.3 Voronoi load-bearing structure -- 1.8.4 Energy design -- 1.8.5 Improvement and optimization of passive solar gains -- 1.8.6 Active solar energy utilization -- 1.8.7 Building integrated photovoltaic-tracker -- 1.8.8 Phase change materials climate wings -- 1.8.9 Textile building envelope -- References -- Chapter 2 Fundamentals of BIPVT design and integration -- 2.1 Physics of photovoltaics -- 2.1.1 Photovoltaic materials -- 2.1.2 Silicon solar cells -- 2.1.3 The efficiency of a photovoltaic cell -- 2.2 Heat and mass transfer in BIPVT panels -- 2.2.1 The first law of thermodynamics and steady flow -- 2.2.2 Heat transfer in a BIPVT panel -- 2.2.3 Thermal radiation -- 2.2.4 Heat convection -- 2.2.5 Heat conduction -- 2.2.6 The second law of thermodynamics and heat pump -- 2.3 Energy dynamics and modeling of BIPVT systems -- 2.3.1 Electric modeling of BIPVT systems -- 2.3.2 Thermal modeling of BIPVT systems -- 2.3.3 Water pump design of BIPVT system.
|
505 |
8 |
|
|a 2.3.4 Stress and deflection analysis of BIPVT panels -- 2.4 Life cycle analysis of BIPVT systems -- 2.4.1 Economic metrics -- 2.4.2 LCA functional unit -- 2.4.3 Boundary definition -- 2.4.4 LCA performance of BIVPT systems -- 2.5 Case study: Development of a BIPVT panel with a foamed aluminum substrate -- 2.5.1 Concept and design outline -- 2.5.2 Modeling and simulation -- 2.5.3 Governing equations -- 2.5.4 Fluid-solid interface cosimulation -- 2.5.5 Simulation geometry and material properties -- 2.5.6 Boundary conditions -- 2.5.7 Steady-state thermal solution results -- 2.5.8 Parametric study of the thermal conductance of interfaces -- 2.5.9 Parametric study of the thermal conductivity -- 2.5.10 Experiments -- 2.5.11 Results and discussion -- 2.5.12 Conclusions -- References -- Chapter 3 Solar cell manufacture and module packaging -- 3.1 Introduction -- 3.2 Silicon refining process -- 3.2.1 The Siemens process vs Schmid process -- 3.2.2 Sawing ingots to wafers -- 3.3 Silicon solar cell production -- 3.3.1 Silicon cell production procedure -- 3.3.2 Screen printing process -- 3.3.3 Back contact cells -- 3.4 Latest silicon cell technology and the advancements -- 3.5 Solar module production -- 3.5.1 Interconnection materials -- 3.5.2 Solar cell tabbing and stringing -- 3.5.3 Module encapsulant -- 3.5.4 Ethylene-vinyl acetate (EVA) -- 3.5.5 Polyvinyl butyral (PVB) -- 3.5.6 Thermoplastic silicone elastomer -- 3.5.7 Thermoplastic polyolefin elastomer -- 3.5.8 Ionomers -- 3.5.9 Backsheet -- 3.6 The hybrid lamination technology -- 3.7 Quality control and assurance -- 3.8 Vision and challenges toward future circular manufacture -- 3.9 Case study 1: The Water and Life Museums, Hemet, California -- 3.10 Case study 2: Metlife Solar Ring -- 3.10.1 Module electrical characteristics -- 3.10.2 Electrical installation -- 3.10.3 Series connections.
|
505 |
8 |
|
|a 3.10.4 String sizing -- 3.10.5 Grounding -- 3.10.6 Mechanical installation -- 3.10.7 Maintenance -- 3.10.8 System structure -- References -- Chapter 4 Production and acceptance of BIPV panels -- 4.1 Introduction -- 4.2 Material preparation and quality control -- 4.2.1 Inspection and acceptance of the incoming goods -- 4.2.2 Encapsulant preparation -- 4.2.3 Backsheet (backing foil) preparation -- 4.2.4 Covers and insulators -- 4.2.5 Ribbon connection preparation -- 4.3 Soldering of solar cells -- 4.3.1 Front tabbing -- 4.3.2 Visual check of the soldering joints and cell surface cleanliness -- 4.3.3 Peel test -- 4.3.4 Soldering string -- 4.3.5 String soldering: quality control -- 4.3.6 Equipment, devices, and tools -- 4.4 Laying up of glass/foil laminates -- 4.5 Lamination of glass/foil laminates -- 4.6 Assembly of modules -- 4.7 Junction boxes assembly -- 4.8 Quality control standards -- 4.9 Determining the gel content of the encapsulant (EVA) -- 4.9.1 Purpose -- 4.9.2 Safety precautions -- 4.9.3 Principle -- 4.10 BIPVT products -- 4.10.1 Sunslate -- 4.10.2 TallSlate -- 4.11 Building-integrated photovoltaic projects on building envelopes -- 4.11.1 Building-integrated photovoltaic glass projects -- 4.11.2 Sunslate installations -- 4.11.3 TallSlate installations -- 4.12 Case study: Natomas parking lot -- Chapter 5 Design, development, and applications of BIPVT systems -- 5.1 Introduction -- 5.2 Building integrated thermal electric roofing system -- 5.2.1 Components and functions of Sunslate building integrated thermal electric roofing system -- 5.2.2 Operation of the Sunslate building integrated thermal electric roofing system -- 5.3 Installation projects of the Sunslate building integrated thermal electric roofing system -- 5.3.1 Sullivan estate project-aesthetical roof in a resort.
|
505 |
8 |
|
|a 5.3.2 Virginia project-building integrated thermal electric roofing system and skylight on a residential home -- 5.3.3 The future house USA project -- 5.4 Development of the TallSlate building integrated thermal electric roofing system -- 5.5 Recent development and products of building integrated thermal electric roofing system -- 5.6 Design and development of building integrated thermal electric roofing system -- 5.6.1 Early building integrated thermal electric roofing system prototype -- 5.6.2 A novel manufacturing method -- 5.6.3 Modernized experimental facility -- 5.6.4 Improved building integrated thermal electric roofing system technologies -- 5.7 Building integrated thermal electric roofing system applications to energy independent buildings -- 5.7.1 From zero energy to energy independency -- 5.7.2 Microgrid and energy storage for building integrated thermal electric roofing system applications -- 5.8 BIPVT design and demonstration at the Cherokee home -- 5.9 Case study 1: Turn an old house into the Beauty at the Beach -- 5.10 Case study 2: Dover building integrated thermal electric roofing system installation -- References -- Chapter 6 BIPVT coupling with geothermal systems -- 6.1 Introduction -- 6.2 Geothermal well design and characterization -- 6.2.1 Geothermal well construction -- 6.2.2 Ground temperature profile -- 6.3 Geothermal well systems -- 6.3.1 Design procedure of bidirectional geothermal wells -- 6.3.2 Heat and mass flow in a bidirectional geothermal system and the energy efficiency -- 6.3.3 Heat transfer in the system -- 6.3.4 Thermal fluid circulation in the system -- 6.3.5 Energy consumption and coefficient of performance of the system -- 6.4 A novel passive bidirectional BIPVT-geothermal system -- 6.4.1 The passive BIPVT-geothermal system design -- 6.4.2 Technology innovations and merits.
|
505 |
8 |
|
|a 6.4.3 Technical and economic feasibility -- 6.4.4 Energy consumption and efficiency analysis -- 6.5 Case study 1: A net-zero energy house at Wisconsin -- 6.6 Case study 2: BIPV curtain wall building -- References -- Chapter 7 BIPVT coupling with wind and wave energy -- 7.1 Introduction -- 7.2 Fundamentals of wind energy harvesting -- 7.3 Fundamentals of wave energy harvesting -- 7.4 Design of a PV-wind-wave coupled system -- 7.4.1 Overview of the structural design and construction -- 7.4.2 BIPVT design and maintenance -- 7.4.3 Freshwater generation -- 7.4.4 Power generation and management -- 7.5 Remarks for prospective development and applications -- 7.6 Case study: Wavehouse -- References -- Chapter 8 BIPVT applications in transportation -- 8.1 Introduction -- 8.2 Early personal rapid transit systems -- 8.2.1 UK: Cabtrack -- 8.2.2 Japan: Computer-controlled vehicle system -- 8.2.3 Germany: Cabinentaxi -- 8.2.4 France: Aramis -- 8.2.5 Sweden: Gothenburg -- 8.2.6 United States: Morgantown personal rapid transit -- 8.3 Integration and operation of the Morgantown personal rapid transit -- 8.3.1 System operation -- 8.3.2 Personal rapid transit operation and communications -- 8.3.3 The station vehicle management system -- 8.3.4 Vehicle guideway operations -- 8.3.5 Passenger and personnel safety -- 8.4 Challenges and opportunities -- 8.5 BIPVT for sun powered personal rapid transit -- 8.5.1 Motivation and design philosophy -- 8.5.2 The sun tunnel of solar canopy -- 8.5.3 Personal rapid transit system operation -- 8.5.4 The sensing and control system -- 8.5.5 Energy storage and operation system -- 8.5.6 The layout of the station operation -- 8.6 Perspectives of BIPVT in transportation -- 8.7 Case Study: Personal Rapid Transit (PRT) -- 8.7.1 Overview -- 8.7.2 Intra Dwarka Trips PRT Project -- 8.7.3 Rotterdam PRT Project.
|
650 |
|
0 |
|a Building-integrated photovoltaic systems.
|
650 |
|
0 |
|a Building-integrated photovoltaic systems
|x Design and construction.
|
650 |
|
6 |
|a �Electrification photovolta�ique.
|0 (CaQQLa)201-0290673
|
650 |
|
7 |
|a Building-integrated photovoltaic systems
|2 fast
|0 (OCoLC)fst00840958
|
700 |
1 |
|
|a Zadshir, Mehdi.
|
700 |
1 |
|
|a Pao, Frank.
|
776 |
0 |
8 |
|i Print version:
|z 9780128210659
|
776 |
0 |
8 |
|i Print version:
|z 0128210648
|z 9780128210642
|w (OCoLC)1204142469
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128210642
|z Texto completo
|