Cargando…

Thermo-economic approach to energy from waste /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Ramanathan, Anand
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, [2022]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • A Thermo-Economic Approach to Energy From Waste
  • Copyright Page
  • Contents
  • About the authors
  • Preface
  • Acronyms and abbreviations
  • 1 Pyrolysis of waste biomass: toward sustainable development
  • 1.1 Introduction
  • 1.2 Component of lignocellulosic biomasses
  • 1.2.1 Cellulose
  • 1.2.2 Hemicellulose
  • 1.2.3 Lignin
  • 1.2.4 Ash
  • 1.2.5 Extractives
  • 1.3 Types of pyrolysis
  • 1.3.1 Slow pyrolysis
  • 1.3.2 Intermediate pyrolysis
  • 1.3.3 Fast pyrolysis
  • 1.4 Mechanism of pyrolysis
  • 1.4.1 Mechanism of cellulose pyrolysis
  • 1.4.2 Mechanism of hemicellulose pyrolysis
  • 1.4.3 Mechanism of lignin pyrolysis
  • 1.5 Reactor configurations
  • 1.5.1 Fluidized-bed reactor
  • 1.5.2 Circulating fluidized-bed reactor
  • 1.5.3 Ablative plate reactor
  • 1.5.4 Auger/screw reactor
  • 1.5.5 Rotating cone reactor
  • 1.5.6 Cyclone/vortex reactor
  • 1.6 Upgradation techniques for pyrolyzed bio-oil
  • 1.6.1 Physical upgradation of crude bio-oil
  • 1.6.1.1 Hot vapor filtration
  • 1.6.1.2 Emulsification
  • 1.6.1.3 Solvent addition
  • 1.6.2 Chemical upgradation of bio-oil
  • 1.6.2.1 Aqueous phase processing/reforming
  • 1.6.2.2 Mild Cracking
  • 1.6.2.3 Esterification
  • 1.6.3 Catalytical upgradation of bio-oil
  • 1.6.3.1 Hydrotreating
  • 1.6.3.2 Catalytic cracking
  • 1.6.3.3 Hydrodeoxygenation
  • 1.6.3.4 Steam reforming
  • 1.6.3.5 Supercritical fluids
  • 1.7 Energy recovery for heating or process applications
  • 1.8 Conclusion
  • References
  • 2 Biomass pyrolysis system based on life cycle assessment and Aspen plus analysis and kinetic modeling
  • 2.1 Introduction
  • 2.2 Current Indian scenario of waste-to-energy conversion technologies
  • 2.3 From biomass to biofuel through pyrolysis
  • 2.4 Life cycle assessment methodology for pyrolysis-based bio-oil production
  • 2.4.1 Steps followed for studying LCA
  • 2.4.2 Setting require for LCA.
  • 2.4.3 Inventory data collection
  • 2.4.4 Analysis of life cycle inventory
  • 2.4.5 Impact assessment of LCA
  • 2.4.6 Sensitivity analysis
  • 2.5 Aspen plus approach to biomass pyrolysis system
  • 2.6 Kinetics of biomass pyrolysis
  • 2.7 Isoconversional techniques
  • 2.8 Other kinetic models
  • 2.9 Application of biomass pyrolysis products
  • 2.9.1 Bio-oil applications
  • 2.9.1.1 Biochemicals
  • 2.9.1.2 Biofuel
  • 2.9.1.3 Biopolymer
  • 2.9.2 Biochar application
  • 2.9.2.1 Soil amendment
  • 2.9.2.2 Solid biofuel
  • 2.9.2.3 Activated carbon
  • 2.10 Conclusions
  • References
  • 3 Biomass gasification integrated with Fischer-Tropsch reactor: techno-economic approach
  • 3.1 Introduction
  • 3.2 Surplus biomass available in India
  • 3.2.1 Conflicting applications for crop residue biomass
  • 3.2.2 Biomass
  • 3.2.3 Challenges in biomass utilization
  • 3.2.4 Biomass to energy conversion processes
  • 3.3 Pretreatment of biomass
  • 3.3.1 Torrefaction
  • 3.3.1.1 Changes pertaining to that structure
  • 3.3.1.2 Physiochemical properties
  • 3.3.1.3 Moisture content
  • 3.3.2 Types of pretreatment
  • 3.3.2.1 Physical pretreatment
  • 3.3.2.2 Mechanical methods
  • 3.3.2.3 Biological pretreatment
  • 3.3.2.4 Enzymatic pretreatment
  • 3.3.2.5 Microbial and fungus prevention pretreatment
  • 3.3.2.6 Other latest pretreatment
  • 3.4 Kinetics of biomass gasification for syngas generation
  • 3.4.1 Gasification mechanism
  • 3.4.1.1 Drying zone or bunker section
  • 3.4.1.2 Pyrolysis or thermal decomposition zone
  • 3.4.1.3 Partial oxidation or combustion zone
  • 3.4.1.4 Reduction zone
  • 3.4.2 Syngas conditioning
  • 3.5 Gasification integrated with Fischer-Tropsch reactor
  • 3.5.1 Bioenergy potential calculations and estimation
  • 3.5.2 Fischer-Tropsch synthesis
  • 3.5.3 Fischer-Tropsch catalysts
  • 3.5.4 Fischer-Tropsch mechanism.
  • 3.5.5 Biofuel synthesis from Fischer-Tropsch reactor
  • 3.5.5.1 Slurry bubble column reactors
  • 3.6 Techno-economic analysis of Fischer-Tropsch reactor with biomass gasification
  • 3.7 Conclusion
  • References
  • 4 Energy recovery from biomass through gasification technology
  • 4.1 Introduction
  • 4.2 Thermochemical conversion
  • 4.2.1 Combustion
  • 4.2.2 Pyrolysis
  • 4.2.3 Gasification
  • 4.2.4 Principles of anaerobic digestion
  • 4.3 Production and use of aquatic biomass
  • 4.3.1 Potential of biomass waste
  • 4.4 Lignocellulose biomass pretreatment
  • 4.4.1 Physical methods
  • 4.4.2 Chemical Methods
  • 4.4.3 Biological pretreatment
  • 4.5 Bioconversion and downstream processing of biomass-derived molecules' conversion to chemicals
  • 4.6 Energy recovery for heating or process applications
  • 4.6.1 Steam cycle
  • 4.6.2 Engine
  • 4.6.3 Gas turbine
  • 4.6.4 Biogas
  • 4.7 Conversion of lignocellulosic biomass-derived intermediates lignin biorefinery biogas from waste biomass
  • 4.7.1 Hydrolysis
  • 4.7.2 Acidogenesis
  • 4.7.3 Acetogenesis
  • 4.7.4 Methanogenesis
  • 4.8 Parameters affecting anaerobic digestion process
  • 4.8.1 Temperature
  • 4.8.2 Solid to water content
  • 4.8.3 pH level
  • 4.8.4 Retention period
  • 4.8.5 Organic loading rate
  • 4.8.6 C/N ratio
  • 4.9 The concept of gasification and its types of reactors
  • 4.9.1 Fixed bed gasification
  • 4.9.2 Updraft gasifier
  • 4.9.3 Downdraft gasifier
  • 4.9.4 Cross-flow gasifier
  • 4.9.5 Fluidized bed gasification
  • 4.9.6 Bubbling fluidized bed gasification
  • 4.10 Life cycle analysis of gasification process
  • 4.10.1 Scope of analysis and definition
  • 4.10.2 Boundary system and analysis of related legislation
  • 4.10.3 Proper selection of environmental performance indicators
  • 4.10.4 Inventory analysis
  • 4.10.5 Environmental impact assessment
  • 4.10.6 Life cycle assessment.
  • 4.11 Aspen plus approach to the biomass gasification system
  • 4.12 Conclusion
  • References
  • 5 Life Cycle Assessment applied to waste-to-energy technologies
  • 5.1 Introduction
  • 5.2 What is life cycle assessment?
  • 5.2.1 Historical development
  • 5.2.2 Applications of LCA
  • 5.2.3 Steps and procedures for an LCA study
  • 5.2.4 Definition of the objective and scope
  • 5.2.5 Analysis of the life cycle inventory
  • 5.2.6 Life cycle impact assessment
  • 5.2.7 Interpretation
  • 5.3 Use of LCA to analyze waste-to-energy technologies
  • 5.3.1 Main applications
  • 5.4 Highlights in LCA studies for waste-to-energy technologies
  • 5.4.1 Functional unit
  • 5.4.2 Type of residue
  • 5.4.3 Form of energy use
  • 5.4.4 Energy recovery
  • 5.4.5 Sensitivity and uncertainty analyses
  • 5.5 Main results found in the literature
  • 5.6 Conclusion
  • References
  • 6 Waste disposal in selected favelas (slums) of Rio de Janeiro
  • 6.1 Historical background
  • 6.1.1 Some numbers about subnormal clusters
  • 6.1.2 The favela of Catumbi
  • 6.2 Survey and study of solid waste in 37 slums and in Catumbi
  • 6.3 Final considerations
  • References
  • 7 Transesterification process of biodiesel production from nonedible vegetable oil sources using catalysts from waste sources
  • 7.1 Introduction
  • 7.2 Biodiesel production as an alternative source of energy
  • 7.3 Transesterification: reaction and mechanism
  • 7.4 Catalysts
  • 7.4.1 Chemical catalysts
  • 7.4.1.1 Homogeneous catalysts
  • 7.4.1.2 Heterogeneous catalysts
  • 7.4.1.3 Preparation of natural derived heterogeneous catalyst
  • 7.4.1.4 Nanocatalysts
  • 7.4.2 Biochemical catalysts
  • 7.4.3 Impact on kinetics of transesterification and modeling
  • 7.4.3.1 Determination of kinetic parameters in a batch process
  • 7.4.3.2 Modeling of batch reactor design
  • 7.4.3.3 Modeling for continuous reactor design.
  • 7.5 Hydrocarbon feed stocks for biodiesel
  • 7.5.1 Edible oils
  • 7.5.2 Nonedible oils
  • 7.6 Various novel technologies for biodiesel production
  • 7.6.1 Ultrasonic-assisted biodiesel production
  • 7.6.2 Micro reactive transesterification
  • 7.6.3 Microwave-assisted biodiesel production
  • 7.6.4 Reactive distilled transesterification
  • 7.6.5 Supercritical technology of biodiesel production (noncatalytic)
  • 7.7 Techno-economic analysis of biodiesel production
  • 7.7.1 One-time costs
  • 7.7.2 Raw material and operating cost
  • 7.7.3 Fixed cost and maintenance cost
  • 7.7.4 Cost calculation with respect to production rate
  • 7.8 Perspectives and conclusion
  • References
  • Index
  • Back Cover.