Cargando…

Multiscale biomechanical modeling of the brain /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Prabhu, Raj K. (Editor ), Horstemeyer, Mark F. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, [2022]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front cover
  • Half title
  • Full title
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter 1
  • The multiscale nature of the brain and traumatic brain injury
  • 1.1 Introduction
  • 1.2 The brain's multiscale structure
  • 1.2.1 Gross anatomy
  • 1.2.1.1 Cerebrum
  • 1.2.1.2 Cerebellum
  • 1.2.1.3 Diencephalon
  • 1.2.1.4 Brainstem
  • 1.2.2 Microanatomy
  • 1.2.2.1 Neuroglia
  • 1.2.2.2 Neurons
  • 1.3 The multiscale nature of TBI
  • 1.3.1 Multiscale injury mechanisms
  • 1.3.2 Types of injury
  • 1.3.3 Examples of injuries
  • 1.3.4 Neurobehavioral sequelae
  • 1.3.5 TBI research methods
  • 1.3.5.1 Experiments
  • 1.3.5.2 Computational models (simulations)
  • 1.4 Summary
  • References
  • Chapter 2
  • Introduction to multiscale modeling of the human brain
  • 2.1 Introduction
  • 2.2 Constitutive modeling of the brain
  • 2.3 Brain tissue experiments used for constitutive modeling calibration
  • 2.4 Modeling summary of upcoming chapters in the book
  • 2.5 Summary
  • References
  • Chapter 3
  • Density functional theory and bridging to classical interatomic force fields
  • 3.1 Introduction
  • 3.1.1 Why quantum mechanics?
  • 3.1.2 Physical chemistry of biomechanical systems
  • 3.2 Density functional theory
  • 3.3 Downscaling requirements of classical force field atomistic models
  • 3.3.1 Upscaling properties
  • 3.4 Sample atomistic force fields formalism and development of an interatomic potential for hydrocarbons
  • 3.4.1 MEAMBO
  • 3.4.2 Calibration of the MEAMBO potential
  • 3.4.3 Parameterization of the interatomic potential
  • 3.4.4 Validation of the interatomic force fields
  • 3.5 Summary
  • References
  • Chapter 4
  • Modeling nanoscale cellular structures using molecular dynamics
  • 4.1 Introduction
  • 4.2 Methods
  • 4.2.1 Molecular dynamics simulation method
  • 4.2.2 Atomic force fields.
  • 4.2.3 Simulation ensembles of atoms
  • 4.2.4 Boundary conditions
  • 4.2.5 Current simulation details
  • 4.2.6 Molecular dynamics analysis methods for the phospholipid bilayer (neuron membrane)
  • 4.2.6.1 Stress-strain behavior of the neuron membrane
  • 4.2.6.2 Image analysis for stereological quantification of neuron membrane damage
  • 4.3 Results and discussion for the phospholipid bilayer (neuron membrane)
  • 4.3.1 Stress-strain and damage response
  • 4.3.2 Membrane failure limit diagram
  • 4.4 Summary
  • Acknowledgments
  • References
  • Chapter 5
  • Microscale mechanical modeling of brain neuron(s) and axon(s)
  • 5.1 Introduction
  • 5.2 Modeling microscale neurons
  • 5.2.1 Modeling neurons
  • 5.2.2 Modeling mechanical behavior of axons
  • 5.3 Summary and future
  • References
  • Chapter 6
  • Mesoscale finite element modeling of brain structural heterogeneities and geometrical complexities
  • 6.1 Introduction
  • 6.1.1 Modeling length scale
  • 6.2 Methods
  • 6.2.1 Computational methods for properties
  • 6.2.2 Model validation and boundary conditions
  • 6.3 Results and discussion
  • 6.3.1 Geometrical complexities
  • 6.3.1.1 The effects of the sulci
  • 6.3.1.2 Sulcus orientation
  • 6.3.1.3 Sulcus length
  • 6.4 Summary
  • References
  • Chapter 7
  • Modeling mesoscale anatomical structures in macroscale brain finite element models
  • 7.1 Introduction
  • 7.2 Macroscale brain finite element model
  • 7.3 Mesoscale anatomical structures and imaging techniques
  • 7.4 The importance of structural anisotropy in macroscale models of TBI
  • 7.5 Material-based method
  • 7.6 Structure-based method
  • 7.7 Summary and future perspectives
  • References
  • Chapter 8
  • A macroscale mechano-physiological internal state variable (MPISV) model for neuronal membrane damage with ...
  • 8.1 Introduction
  • 8.1.1 Definitions.
  • 8.2 Membrane disruption
  • 8.3 Development of damage evolution equation
  • 8.3.1 Pore number density rate
  • 8.3.2 Pore growth rate
  • 8.3.3 Pore resealing
  • 8.4 Garnering data from molecular dynamics simulations
  • 8.5 Calibration of the mechano-physiological internal state variable damage rate equations
  • 8.6 Sensitivity analysis of damage model at this length scale
  • 8.7 Comparison of model with cell culture studies
  • 8.8 Discussion
  • 8.9 Summary
  • References
  • Chapter 9
  • MRE-based modeling of head trauma
  • 9.1 Introduction
  • 9.2 Model formulation
  • 9.2.1 MRE acquisition and inversion
  • 9.2.2 Finite element mesh generation
  • 9.2.3 Material properties
  • 9.2.4 Experimental verification
  • 9.3 Results and discussion
  • 9.4 Conclusion
  • References
  • Chapter 10
  • Robust concept exploration of driver's side vehicular impacts for human-centric crashworthiness
  • 10.1 Frame of reference
  • 10.2 Problem definition
  • 10.3 Adapted CEF for robust concept exploration
  • 10.4 Head and neck injury criteria-based robust design of vehicular impacts
  • 10.4.1 Clarification of design task-Step A
  • 10.4.2 Design of experiments-Step B
  • 10.4.3 Finite element car crash simulations for predicting injury response-Step C
  • 10.4.3.1 Finite element model
  • 10.4.3.2 Head injury metric analysis
  • 10.4.3.3 Neck injury metric analysis
  • 10.4.4 Building surrogate models-Step D
  • 10.4.5 Formulation of robust design cDSP-Step E
  • 10.4.6 Formulating the design scenarios, exercising the cDSP and exploration of solution space-Step E
  • 10.5 Future: correlate human brain injury to vehicular damage
  • 10.6 Summary
  • References
  • Chapter 11
  • Development of a coupled physical-computational methodology for the investigation of infant head injury
  • 11.1 Introduction
  • 11.2 Methods
  • 11.2.1 Pediatric head development.
  • 11.2.2 Material properties
  • 11.2.3 Mesh convergence
  • 11.2.4 Boundary and loading conditions
  • 11.2.5 Global validation of the FE-head against PMHS
  • 11.2.6 Global, regional, and local validation of the FE-head against the physical model
  • 11.2.7 Statistical analysis
  • 11.3 Results and discussion
  • 11.3.1 Global validation of the FE-head versus the postmortem human surrogate
  • 11.3.2 Global validation of the FE-head versus the physical model
  • 11.3.3 FE-head regional and local validation versus the physical model
  • 11.3.4 Head deformation
  • 11.4 Summary
  • References
  • Chapter 12
  • Experimental data for validating the structural response of computational brain models
  • 12.1 Introduction
  • 12.2 Methods
  • 12.2.1 Experimental brain pressure measurements
  • 12.2.2 Experimental brain deformation measurements
  • 12.2.2.1 High-speed X-ray
  • 12.2.2.2 Dynamic ultrasound
  • 12.2.2.3 Sonomicrometry
  • 12.2.2.4 Tagged magnetic resonance imaging
  • 12.2.2.5 Magnetic resonance elastography
  • 12.3 Challenges and limitations
  • 12.4 Summary and future perspectives
  • References
  • Chapter 13
  • A review of fluid flow in and around the brain, modeling, and abnormalities
  • 13.1 Introduction
  • 13.2 Flow anatomy
  • 13.2.1 Ventricular system
  • 13.2.2 Ventricles and subarachnoid space
  • 13.3 Characteristic numbers
  • 13.3.1 Reynolds number
  • 13.3.2 Womersley number
  • 13.3.3 �Pclet number
  • 13.4 Common brain flow abnormalities
  • 13.4.1 Misfolded proteins
  • 13.4.2 Injury
  • 13.4.3 Reduced arterial pulsatility
  • 13.4.4 Hydrocephalus
  • 13.4.5 Chiari malformation
  • 13.4.6 Syringomyelia and syringobulbia
  • 13.5 Boundary conditions for models
  • 13.5.1 General comments
  • 13.5.2 Cardiac flow
  • 13.5.3 Respiratory flow
  • 13.5.4 Circulatory flow
  • 13.5.4.1 Production-classical model.
  • 13.5.4.2 Absorption-classical model
  • 13.5.4.3 New model
  • 13.5.4.4 Diffusive versus advective transport
  • 13.5.5 Intracranial pressure
  • 13.6 Brain measurement and imaging
  • 13.6.1 Magnetic resonance imaging
  • 13.6.2 Spin/field/gradient echo MRI
  • 13.6.3 Phase contrast MRI
  • 13.6.4 MRI limitations
  • 13.6.5 Pressure monitoring
  • 13.6.6 MRI segmentation
  • 13.7 Flow modeling
  • 13.7.1 CFD simplifications: rigid walls
  • 13.7.2 CFD simplifications: microstructures
  • 13.7.2.1 CFD simplifications: arachnoid granulations
  • 13.7.2.2 CFD simplifications: arachnoid trabeculae
  • 13.7.2.3 CFD simplifications: other structures
  • 13.8 Literature gap
  • References
  • Chapter 14
  • Resonant frequencies of a human brain, skull, and head
  • 14.1 Introduction
  • 14.2 Problem set-up for the finite element simulations
  • 14.3 Results
  • 14.3.1 Whole head: fundamental frequency and mode shapes
  • 14.3.2 Brain: fundamental frequency and mode shapes
  • 14.4 Discussion
  • 14.5 Conclusions
  • References
  • Chapter 15
  • State-of-the-art of multiscale modeling of mechanical impacts to the human brain
  • 15.1 Introduction
  • 15.2 Work to be completed
  • 15.2.1 Multiphysics aspects of the brain
  • 15.2.2 Multiscale structure-property relationships of the brain
  • 15.2.3 Different biological effects on the brain
  • 15.2.4 The liquid-solid aspects of the brain
  • 15.2.5 Different human ages
  • 15.3 Conclusions
  • References
  • Index
  • Back cover.