Multiscale biomechanical modeling of the brain /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Academic Press,
[2022]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front cover
- Half title
- Full title
- Copyright
- Contents
- Contributors
- Preface
- Chapter 1
- The multiscale nature of the brain and traumatic brain injury
- 1.1 Introduction
- 1.2 The brain's multiscale structure
- 1.2.1 Gross anatomy
- 1.2.1.1 Cerebrum
- 1.2.1.2 Cerebellum
- 1.2.1.3 Diencephalon
- 1.2.1.4 Brainstem
- 1.2.2 Microanatomy
- 1.2.2.1 Neuroglia
- 1.2.2.2 Neurons
- 1.3 The multiscale nature of TBI
- 1.3.1 Multiscale injury mechanisms
- 1.3.2 Types of injury
- 1.3.3 Examples of injuries
- 1.3.4 Neurobehavioral sequelae
- 1.3.5 TBI research methods
- 1.3.5.1 Experiments
- 1.3.5.2 Computational models (simulations)
- 1.4 Summary
- References
- Chapter 2
- Introduction to multiscale modeling of the human brain
- 2.1 Introduction
- 2.2 Constitutive modeling of the brain
- 2.3 Brain tissue experiments used for constitutive modeling calibration
- 2.4 Modeling summary of upcoming chapters in the book
- 2.5 Summary
- References
- Chapter 3
- Density functional theory and bridging to classical interatomic force fields
- 3.1 Introduction
- 3.1.1 Why quantum mechanics?
- 3.1.2 Physical chemistry of biomechanical systems
- 3.2 Density functional theory
- 3.3 Downscaling requirements of classical force field atomistic models
- 3.3.1 Upscaling properties
- 3.4 Sample atomistic force fields formalism and development of an interatomic potential for hydrocarbons
- 3.4.1 MEAMBO
- 3.4.2 Calibration of the MEAMBO potential
- 3.4.3 Parameterization of the interatomic potential
- 3.4.4 Validation of the interatomic force fields
- 3.5 Summary
- References
- Chapter 4
- Modeling nanoscale cellular structures using molecular dynamics
- 4.1 Introduction
- 4.2 Methods
- 4.2.1 Molecular dynamics simulation method
- 4.2.2 Atomic force fields.
- 4.2.3 Simulation ensembles of atoms
- 4.2.4 Boundary conditions
- 4.2.5 Current simulation details
- 4.2.6 Molecular dynamics analysis methods for the phospholipid bilayer (neuron membrane)
- 4.2.6.1 Stress-strain behavior of the neuron membrane
- 4.2.6.2 Image analysis for stereological quantification of neuron membrane damage
- 4.3 Results and discussion for the phospholipid bilayer (neuron membrane)
- 4.3.1 Stress-strain and damage response
- 4.3.2 Membrane failure limit diagram
- 4.4 Summary
- Acknowledgments
- References
- Chapter 5
- Microscale mechanical modeling of brain neuron(s) and axon(s)
- 5.1 Introduction
- 5.2 Modeling microscale neurons
- 5.2.1 Modeling neurons
- 5.2.2 Modeling mechanical behavior of axons
- 5.3 Summary and future
- References
- Chapter 6
- Mesoscale finite element modeling of brain structural heterogeneities and geometrical complexities
- 6.1 Introduction
- 6.1.1 Modeling length scale
- 6.2 Methods
- 6.2.1 Computational methods for properties
- 6.2.2 Model validation and boundary conditions
- 6.3 Results and discussion
- 6.3.1 Geometrical complexities
- 6.3.1.1 The effects of the sulci
- 6.3.1.2 Sulcus orientation
- 6.3.1.3 Sulcus length
- 6.4 Summary
- References
- Chapter 7
- Modeling mesoscale anatomical structures in macroscale brain finite element models
- 7.1 Introduction
- 7.2 Macroscale brain finite element model
- 7.3 Mesoscale anatomical structures and imaging techniques
- 7.4 The importance of structural anisotropy in macroscale models of TBI
- 7.5 Material-based method
- 7.6 Structure-based method
- 7.7 Summary and future perspectives
- References
- Chapter 8
- A macroscale mechano-physiological internal state variable (MPISV) model for neuronal membrane damage with ...
- 8.1 Introduction
- 8.1.1 Definitions.
- 8.2 Membrane disruption
- 8.3 Development of damage evolution equation
- 8.3.1 Pore number density rate
- 8.3.2 Pore growth rate
- 8.3.3 Pore resealing
- 8.4 Garnering data from molecular dynamics simulations
- 8.5 Calibration of the mechano-physiological internal state variable damage rate equations
- 8.6 Sensitivity analysis of damage model at this length scale
- 8.7 Comparison of model with cell culture studies
- 8.8 Discussion
- 8.9 Summary
- References
- Chapter 9
- MRE-based modeling of head trauma
- 9.1 Introduction
- 9.2 Model formulation
- 9.2.1 MRE acquisition and inversion
- 9.2.2 Finite element mesh generation
- 9.2.3 Material properties
- 9.2.4 Experimental verification
- 9.3 Results and discussion
- 9.4 Conclusion
- References
- Chapter 10
- Robust concept exploration of driver's side vehicular impacts for human-centric crashworthiness
- 10.1 Frame of reference
- 10.2 Problem definition
- 10.3 Adapted CEF for robust concept exploration
- 10.4 Head and neck injury criteria-based robust design of vehicular impacts
- 10.4.1 Clarification of design task-Step A
- 10.4.2 Design of experiments-Step B
- 10.4.3 Finite element car crash simulations for predicting injury response-Step C
- 10.4.3.1 Finite element model
- 10.4.3.2 Head injury metric analysis
- 10.4.3.3 Neck injury metric analysis
- 10.4.4 Building surrogate models-Step D
- 10.4.5 Formulation of robust design cDSP-Step E
- 10.4.6 Formulating the design scenarios, exercising the cDSP and exploration of solution space-Step E
- 10.5 Future: correlate human brain injury to vehicular damage
- 10.6 Summary
- References
- Chapter 11
- Development of a coupled physical-computational methodology for the investigation of infant head injury
- 11.1 Introduction
- 11.2 Methods
- 11.2.1 Pediatric head development.
- 11.2.2 Material properties
- 11.2.3 Mesh convergence
- 11.2.4 Boundary and loading conditions
- 11.2.5 Global validation of the FE-head against PMHS
- 11.2.6 Global, regional, and local validation of the FE-head against the physical model
- 11.2.7 Statistical analysis
- 11.3 Results and discussion
- 11.3.1 Global validation of the FE-head versus the postmortem human surrogate
- 11.3.2 Global validation of the FE-head versus the physical model
- 11.3.3 FE-head regional and local validation versus the physical model
- 11.3.4 Head deformation
- 11.4 Summary
- References
- Chapter 12
- Experimental data for validating the structural response of computational brain models
- 12.1 Introduction
- 12.2 Methods
- 12.2.1 Experimental brain pressure measurements
- 12.2.2 Experimental brain deformation measurements
- 12.2.2.1 High-speed X-ray
- 12.2.2.2 Dynamic ultrasound
- 12.2.2.3 Sonomicrometry
- 12.2.2.4 Tagged magnetic resonance imaging
- 12.2.2.5 Magnetic resonance elastography
- 12.3 Challenges and limitations
- 12.4 Summary and future perspectives
- References
- Chapter 13
- A review of fluid flow in and around the brain, modeling, and abnormalities
- 13.1 Introduction
- 13.2 Flow anatomy
- 13.2.1 Ventricular system
- 13.2.2 Ventricles and subarachnoid space
- 13.3 Characteristic numbers
- 13.3.1 Reynolds number
- 13.3.2 Womersley number
- 13.3.3 �Pclet number
- 13.4 Common brain flow abnormalities
- 13.4.1 Misfolded proteins
- 13.4.2 Injury
- 13.4.3 Reduced arterial pulsatility
- 13.4.4 Hydrocephalus
- 13.4.5 Chiari malformation
- 13.4.6 Syringomyelia and syringobulbia
- 13.5 Boundary conditions for models
- 13.5.1 General comments
- 13.5.2 Cardiac flow
- 13.5.3 Respiratory flow
- 13.5.4 Circulatory flow
- 13.5.4.1 Production-classical model.
- 13.5.4.2 Absorption-classical model
- 13.5.4.3 New model
- 13.5.4.4 Diffusive versus advective transport
- 13.5.5 Intracranial pressure
- 13.6 Brain measurement and imaging
- 13.6.1 Magnetic resonance imaging
- 13.6.2 Spin/field/gradient echo MRI
- 13.6.3 Phase contrast MRI
- 13.6.4 MRI limitations
- 13.6.5 Pressure monitoring
- 13.6.6 MRI segmentation
- 13.7 Flow modeling
- 13.7.1 CFD simplifications: rigid walls
- 13.7.2 CFD simplifications: microstructures
- 13.7.2.1 CFD simplifications: arachnoid granulations
- 13.7.2.2 CFD simplifications: arachnoid trabeculae
- 13.7.2.3 CFD simplifications: other structures
- 13.8 Literature gap
- References
- Chapter 14
- Resonant frequencies of a human brain, skull, and head
- 14.1 Introduction
- 14.2 Problem set-up for the finite element simulations
- 14.3 Results
- 14.3.1 Whole head: fundamental frequency and mode shapes
- 14.3.2 Brain: fundamental frequency and mode shapes
- 14.4 Discussion
- 14.5 Conclusions
- References
- Chapter 15
- State-of-the-art of multiscale modeling of mechanical impacts to the human brain
- 15.1 Introduction
- 15.2 Work to be completed
- 15.2.1 Multiphysics aspects of the brain
- 15.2.2 Multiscale structure-property relationships of the brain
- 15.2.3 Different biological effects on the brain
- 15.2.4 The liquid-solid aspects of the brain
- 15.2.5 Different human ages
- 15.3 Conclusions
- References
- Index
- Back cover.