Microgrids : modeling, control, and applications /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Academic Press,
[2022]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Microgrids
- Copyright Page
- Dedication
- Contents
- List of contributors
- I. Introduction to microgrids
- 1 Microgrids, their types, and applications
- 1.1 Introduction
- 1.2 Microgrid classification
- 1.3 Structure
- 1.4 Modes of operation
- 1.5 Control of AC microgrid
- 1.5.1 Hierarchical control schemes
- 1.6 Control of DC microgrid
- 1.6.1 Control structures
- 1.7 Control of hybrid (AC/DC) microgrid
- 1.8 Microgrid research areas
- 1.9 Solar
- 1.9.1 Independent (or stand-alone) PV system
- 1.9.2 Grid-connected PV system
- 1.9.3 PV modeling
- 1.10 Maximum power point tracking
- 1.10.1 P&
- O method
- 1.11 Wind turbine system
- 1.12 Battery
- 1.12.1 Lithium-ion battery
- 1.12.2 Lead-acid battery
- 1.12.3 Battery modeling
- 1.12.4 Sizing batteries correctly
- 1.12.4.1 Voltage of system (min and max)
- 1.12.4.2 Duty cycle
- 1.12.4.3 Correction factor
- 1.13 Fuel cell
- 1.14 Advantages and applications of microgrid
- 1.15 Conclusion
- References
- II. AC microgrids
- 2 Disturbance observer-aided adaptive sliding mode controller for frequency regulation in hybrid power system
- 2.1 Introduction
- 2.2 System modeling
- 2.2.1 Model of reheated thermal power system
- 2.2.1.1 Transfer function model of double-stage reheat turbine
- 2.2.2 Distributed energy resources
- 2.2.2.1 Wind power generation
- 2.2.2.2 Fuel cell
- 2.2.2.3 Aqua-electrolyzer
- 2.2.2.4 Diesel engine generator
- 2.2.2.5 Battery energy storage system
- 2.3 Disturbance observer-aided adaptive sliding mode load frequency controller
- 2.3.1 Traditional sliding mode load frequency controller (SMLFC)
- 2.3.2 Adaptive sliding mode LFC with disturbance observer
- 2.3.2.1 Adaptive law
- 2.4 Results and discussion
- 2.4.1 Performance analysis of isolated HPS against multiple load perturbation.
- 2.4.2 Performance analysis of isolated HPS with multiple-step loads and random wind power perturbation
- 2.4.3 Performance analysis of isolated HPS with GRC and GDB
- 2.4.4 Performance analysis of interconnected two-area HPS with multiple-step load and RWPP
- 2.4.5 Performance analysis of two-area HPS with GRC and GDB
- 2.4.6 Robust stability analysis
- 2.5 Conclusion
- References
- 3 Recent advancements in AC microgrids: a new smart approach to AC microgrid monitoring and control using IoT
- 3.1 Introduction
- 3.2 Problem statement
- 3.3 Literature survey
- 3.4 Block diagram
- 3.5 Methodology
- 3.6 Details of hardware and software used
- 3.6.1 LCD display (JDH162A): a 16�2 LCD is a display unit used in different activities
- 3.7 Details about the web portal: ThingSpeak
- 3.8 Algorithm
- 3.9 Software development flowchart
- 3.10 Results and discussions
- 3.10.1 Hardware section of the model
- 3.11 Graphical analysis
- 3.12 Conclusion and future scope
- References
- Further reading
- III. DC microgrids
- 4 DC microgrid
- 4.1 Introduction
- 4.2 DC microgrid
- 4.3 Mode of operation
- 4.4 Advantages of DC microgrid
- 4.5 Standards
- 4.6 DC microgrid architecture
- 4.6.1 Photovoltaics cell/solar
- 4.6.2 DC-DC converters
- 4.7 Principle of chopper
- 4.8 Boost converter
- 4.9 Case-I (switch S is ON)
- 4.10 Case-II (switch S is OFF)
- 4.11 Buck-boost converter
- 4.12 Case-I (switch S is ON)
- 4.13 Case-II (switch S is OFF)
- 4.13.1 Maximum power point tracking controller
- 4.13.2 Storage device-battery
- 4.14 Working principle
- 4.15 Discharging mechanism
- 4.16 Charging mechanism
- 4.17 State of charge and state of health
- 4.18 Types of batteries
- 4.18.1 Modeling
- 4.19 Types of modeling methods
- 4.20 Equivalent circuit model
- 4.21 Data-driven model
- 4.22 Case study
- 4.23 Conclusion
- References.
- 5 Role of dual active bridge isolated bidirectional DC-DC converter in a DC microgrid
- 5.1 Introduction
- 5.2 Microgrid
- 5.3 Dual-active bridge converter
- 5.3.1 DAB parameter design
- 5.4 Fuzzy logic controller
- 5.5 Performance evaluation
- 5.5.1 Single-phase shift technique
- 5.5.2 Forward conduction mode
- 5.5.3 Reverse conduction mode
- 5.6 Experimental verification
- 5.7 Conclusion
- References
- IV. Hybrid AC/DC microgrids
- 6 Introduction to hybrid AC/DC microgrids
- 6.1 Introduction
- 6.1.1 Hybrid micro-grid
- 6.1.2 The topographies of hybrid micro-grid
- 6.1.3 Need of hybrid micro-grid
- 6.1.4 Comparison between conventional grid and hybrid micro-grid
- 6.2 Architecture of hybrid micro-grid
- 6.3 Architecture of AC-coupled hybrid micro-grid
- 6.4 Architecture of DC-coupled hybrid micro-grid
- 6.5 Architecture of AC-DC coupled hybrid micro-grid
- 6.6 Modeling of hybrid micro-grid components
- 6.6.1 PV system model
- 6.6.2 Wind energy system model
- 6.6.3 Biomass energy model
- 6.6.4 Small-hydro system model
- 6.6.5 Battery model
- 6.6.6 Fuel cell model
- 6.7 Power quality issues in hybrid micro-grid
- 6.8 Control strategies and energy management system for hybrid micro-grid
- 6.8.1 AC-coupled hybrid micro-grid
- 6.8.2 DC-coupled hybrid micro-grid
- 6.8.3 AC-DC coupled hybrid micro-grid
- 6.8.4 Transition between grid-connected and standalone operation mode for energy management
- 6.9 Modeling of hybrid micro-grid
- 6.9.1 Modeling of PV and wind hybrid micro-grid
- 6.9.2 Modeling of PV, wind and biomass hybrid micro-grid
- 6.9.3 Modeling of PV, wind, biomass and small hydro hybrid micro-grid
- 6.10 Mathematical modeling of hybrid micro-grid
- 6.10.1 Modeling of AC micro-grid
- 6.10.2 Modeling of DC micro-grid
- 6.11 Coordination control of the converters
- 6.11.1 Isolated mode.