Cargando…

Microgrids : modeling, control, and applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Guerrero, Josep M., Kandari, Ritu
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, [2022]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Microgrids
  • Copyright Page
  • Dedication
  • Contents
  • List of contributors
  • I. Introduction to microgrids
  • 1 Microgrids, their types, and applications
  • 1.1 Introduction
  • 1.2 Microgrid classification
  • 1.3 Structure
  • 1.4 Modes of operation
  • 1.5 Control of AC microgrid
  • 1.5.1 Hierarchical control schemes
  • 1.6 Control of DC microgrid
  • 1.6.1 Control structures
  • 1.7 Control of hybrid (AC/DC) microgrid
  • 1.8 Microgrid research areas
  • 1.9 Solar
  • 1.9.1 Independent (or stand-alone) PV system
  • 1.9.2 Grid-connected PV system
  • 1.9.3 PV modeling
  • 1.10 Maximum power point tracking
  • 1.10.1 P&amp
  • O method
  • 1.11 Wind turbine system
  • 1.12 Battery
  • 1.12.1 Lithium-ion battery
  • 1.12.2 Lead-acid battery
  • 1.12.3 Battery modeling
  • 1.12.4 Sizing batteries correctly
  • 1.12.4.1 Voltage of system (min and max)
  • 1.12.4.2 Duty cycle
  • 1.12.4.3 Correction factor
  • 1.13 Fuel cell
  • 1.14 Advantages and applications of microgrid
  • 1.15 Conclusion
  • References
  • II. AC microgrids
  • 2 Disturbance observer-aided adaptive sliding mode controller for frequency regulation in hybrid power system
  • 2.1 Introduction
  • 2.2 System modeling
  • 2.2.1 Model of reheated thermal power system
  • 2.2.1.1 Transfer function model of double-stage reheat turbine
  • 2.2.2 Distributed energy resources
  • 2.2.2.1 Wind power generation
  • 2.2.2.2 Fuel cell
  • 2.2.2.3 Aqua-electrolyzer
  • 2.2.2.4 Diesel engine generator
  • 2.2.2.5 Battery energy storage system
  • 2.3 Disturbance observer-aided adaptive sliding mode load frequency controller
  • 2.3.1 Traditional sliding mode load frequency controller (SMLFC)
  • 2.3.2 Adaptive sliding mode LFC with disturbance observer
  • 2.3.2.1 Adaptive law
  • 2.4 Results and discussion
  • 2.4.1 Performance analysis of isolated HPS against multiple load perturbation.
  • 2.4.2 Performance analysis of isolated HPS with multiple-step loads and random wind power perturbation
  • 2.4.3 Performance analysis of isolated HPS with GRC and GDB
  • 2.4.4 Performance analysis of interconnected two-area HPS with multiple-step load and RWPP
  • 2.4.5 Performance analysis of two-area HPS with GRC and GDB
  • 2.4.6 Robust stability analysis
  • 2.5 Conclusion
  • References
  • 3 Recent advancements in AC microgrids: a new smart approach to AC microgrid monitoring and control using IoT
  • 3.1 Introduction
  • 3.2 Problem statement
  • 3.3 Literature survey
  • 3.4 Block diagram
  • 3.5 Methodology
  • 3.6 Details of hardware and software used
  • 3.6.1 LCD display (JDH162A): a 16�2 LCD is a display unit used in different activities
  • 3.7 Details about the web portal: ThingSpeak
  • 3.8 Algorithm
  • 3.9 Software development flowchart
  • 3.10 Results and discussions
  • 3.10.1 Hardware section of the model
  • 3.11 Graphical analysis
  • 3.12 Conclusion and future scope
  • References
  • Further reading
  • III. DC microgrids
  • 4 DC microgrid
  • 4.1 Introduction
  • 4.2 DC microgrid
  • 4.3 Mode of operation
  • 4.4 Advantages of DC microgrid
  • 4.5 Standards
  • 4.6 DC microgrid architecture
  • 4.6.1 Photovoltaics cell/solar
  • 4.6.2 DC-DC converters
  • 4.7 Principle of chopper
  • 4.8 Boost converter
  • 4.9 Case-I (switch S is ON)
  • 4.10 Case-II (switch S is OFF)
  • 4.11 Buck-boost converter
  • 4.12 Case-I (switch S is ON)
  • 4.13 Case-II (switch S is OFF)
  • 4.13.1 Maximum power point tracking controller
  • 4.13.2 Storage device-battery
  • 4.14 Working principle
  • 4.15 Discharging mechanism
  • 4.16 Charging mechanism
  • 4.17 State of charge and state of health
  • 4.18 Types of batteries
  • 4.18.1 Modeling
  • 4.19 Types of modeling methods
  • 4.20 Equivalent circuit model
  • 4.21 Data-driven model
  • 4.22 Case study
  • 4.23 Conclusion
  • References.
  • 5 Role of dual active bridge isolated bidirectional DC-DC converter in a DC microgrid
  • 5.1 Introduction
  • 5.2 Microgrid
  • 5.3 Dual-active bridge converter
  • 5.3.1 DAB parameter design
  • 5.4 Fuzzy logic controller
  • 5.5 Performance evaluation
  • 5.5.1 Single-phase shift technique
  • 5.5.2 Forward conduction mode
  • 5.5.3 Reverse conduction mode
  • 5.6 Experimental verification
  • 5.7 Conclusion
  • References
  • IV. Hybrid AC/DC microgrids
  • 6 Introduction to hybrid AC/DC microgrids
  • 6.1 Introduction
  • 6.1.1 Hybrid micro-grid
  • 6.1.2 The topographies of hybrid micro-grid
  • 6.1.3 Need of hybrid micro-grid
  • 6.1.4 Comparison between conventional grid and hybrid micro-grid
  • 6.2 Architecture of hybrid micro-grid
  • 6.3 Architecture of AC-coupled hybrid micro-grid
  • 6.4 Architecture of DC-coupled hybrid micro-grid
  • 6.5 Architecture of AC-DC coupled hybrid micro-grid
  • 6.6 Modeling of hybrid micro-grid components
  • 6.6.1 PV system model
  • 6.6.2 Wind energy system model
  • 6.6.3 Biomass energy model
  • 6.6.4 Small-hydro system model
  • 6.6.5 Battery model
  • 6.6.6 Fuel cell model
  • 6.7 Power quality issues in hybrid micro-grid
  • 6.8 Control strategies and energy management system for hybrid micro-grid
  • 6.8.1 AC-coupled hybrid micro-grid
  • 6.8.2 DC-coupled hybrid micro-grid
  • 6.8.3 AC-DC coupled hybrid micro-grid
  • 6.8.4 Transition between grid-connected and standalone operation mode for energy management
  • 6.9 Modeling of hybrid micro-grid
  • 6.9.1 Modeling of PV and wind hybrid micro-grid
  • 6.9.2 Modeling of PV, wind and biomass hybrid micro-grid
  • 6.9.3 Modeling of PV, wind, biomass and small hydro hybrid micro-grid
  • 6.10 Mathematical modeling of hybrid micro-grid
  • 6.10.1 Modeling of AC micro-grid
  • 6.10.2 Modeling of DC micro-grid
  • 6.11 Coordination control of the converters
  • 6.11.1 Isolated mode.