|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1280275480 |
003 |
OCoLC |
005 |
20231120010610.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
211024s2022 enk o 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d OPELS
|d N$T
|d OCLCF
|d OCLCO
|d OCLCQ
|d UKMGB
|d OCLCO
|d K6U
|d SFB
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBC268479
|2 bnb
|
016 |
7 |
|
|a 020389786
|2 Uk
|
019 |
|
|
|a 1280308368
|a 1280391157
|
020 |
|
|
|a 9780323854641
|q (electronic bk.)
|
020 |
|
|
|a 0323854648
|q (electronic bk.)
|
020 |
|
|
|z 9780323854634
|
020 |
|
|
|z 032385463X
|
035 |
|
|
|a (OCoLC)1280275480
|z (OCoLC)1280308368
|z (OCoLC)1280391157
|
050 |
|
4 |
|a TK3106
|
072 |
|
7 |
|a TEC
|x 031010
|2 bisacsh
|
082 |
0 |
4 |
|a 621.31
|2 23
|
245 |
0 |
0 |
|a Microgrids :
|b modeling, control, and applications /
|c edited by Josep M. Guerrero and Ritu Kandari.
|
260 |
|
|
|a London :
|b Academic Press,
|c [2022]
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Includes index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover -- Microgrids -- Copyright Page -- Dedication -- Contents -- List of contributors -- I. Introduction to microgrids -- 1 Microgrids, their types, and applications -- 1.1 Introduction -- 1.2 Microgrid classification -- 1.3 Structure -- 1.4 Modes of operation -- 1.5 Control of AC microgrid -- 1.5.1 Hierarchical control schemes -- 1.6 Control of DC microgrid -- 1.6.1 Control structures -- 1.7 Control of hybrid (AC/DC) microgrid -- 1.8 Microgrid research areas -- 1.9 Solar -- 1.9.1 Independent (or stand-alone) PV system -- 1.9.2 Grid-connected PV system -- 1.9.3 PV modeling -- 1.10 Maximum power point tracking -- 1.10.1 P& -- O method -- 1.11 Wind turbine system -- 1.12 Battery -- 1.12.1 Lithium-ion battery -- 1.12.2 Lead-acid battery -- 1.12.3 Battery modeling -- 1.12.4 Sizing batteries correctly -- 1.12.4.1 Voltage of system (min and max) -- 1.12.4.2 Duty cycle -- 1.12.4.3 Correction factor -- 1.13 Fuel cell -- 1.14 Advantages and applications of microgrid -- 1.15 Conclusion -- References -- II. AC microgrids -- 2 Disturbance observer-aided adaptive sliding mode controller for frequency regulation in hybrid power system -- 2.1 Introduction -- 2.2 System modeling -- 2.2.1 Model of reheated thermal power system -- 2.2.1.1 Transfer function model of double-stage reheat turbine -- 2.2.2 Distributed energy resources -- 2.2.2.1 Wind power generation -- 2.2.2.2 Fuel cell -- 2.2.2.3 Aqua-electrolyzer -- 2.2.2.4 Diesel engine generator -- 2.2.2.5 Battery energy storage system -- 2.3 Disturbance observer-aided adaptive sliding mode load frequency controller -- 2.3.1 Traditional sliding mode load frequency controller (SMLFC) -- 2.3.2 Adaptive sliding mode LFC with disturbance observer -- 2.3.2.1 Adaptive law -- 2.4 Results and discussion -- 2.4.1 Performance analysis of isolated HPS against multiple load perturbation.
|
505 |
8 |
|
|a 2.4.2 Performance analysis of isolated HPS with multiple-step loads and random wind power perturbation -- 2.4.3 Performance analysis of isolated HPS with GRC and GDB -- 2.4.4 Performance analysis of interconnected two-area HPS with multiple-step load and RWPP -- 2.4.5 Performance analysis of two-area HPS with GRC and GDB -- 2.4.6 Robust stability analysis -- 2.5 Conclusion -- References -- 3 Recent advancements in AC microgrids: a new smart approach to AC microgrid monitoring and control using IoT -- 3.1 Introduction -- 3.2 Problem statement -- 3.3 Literature survey -- 3.4 Block diagram -- 3.5 Methodology -- 3.6 Details of hardware and software used -- 3.6.1 LCD display (JDH162A): a 16�2 LCD is a display unit used in different activities -- 3.7 Details about the web portal: ThingSpeak -- 3.8 Algorithm -- 3.9 Software development flowchart -- 3.10 Results and discussions -- 3.10.1 Hardware section of the model -- 3.11 Graphical analysis -- 3.12 Conclusion and future scope -- References -- Further reading -- III. DC microgrids -- 4 DC microgrid -- 4.1 Introduction -- 4.2 DC microgrid -- 4.3 Mode of operation -- 4.4 Advantages of DC microgrid -- 4.5 Standards -- 4.6 DC microgrid architecture -- 4.6.1 Photovoltaics cell/solar -- 4.6.2 DC-DC converters -- 4.7 Principle of chopper -- 4.8 Boost converter -- 4.9 Case-I (switch S is ON) -- 4.10 Case-II (switch S is OFF) -- 4.11 Buck-boost converter -- 4.12 Case-I (switch S is ON) -- 4.13 Case-II (switch S is OFF) -- 4.13.1 Maximum power point tracking controller -- 4.13.2 Storage device-battery -- 4.14 Working principle -- 4.15 Discharging mechanism -- 4.16 Charging mechanism -- 4.17 State of charge and state of health -- 4.18 Types of batteries -- 4.18.1 Modeling -- 4.19 Types of modeling methods -- 4.20 Equivalent circuit model -- 4.21 Data-driven model -- 4.22 Case study -- 4.23 Conclusion -- References.
|
505 |
8 |
|
|a 5 Role of dual active bridge isolated bidirectional DC-DC converter in a DC microgrid -- 5.1 Introduction -- 5.2 Microgrid -- 5.3 Dual-active bridge converter -- 5.3.1 DAB parameter design -- 5.4 Fuzzy logic controller -- 5.5 Performance evaluation -- 5.5.1 Single-phase shift technique -- 5.5.2 Forward conduction mode -- 5.5.3 Reverse conduction mode -- 5.6 Experimental verification -- 5.7 Conclusion -- References -- IV. Hybrid AC/DC microgrids -- 6 Introduction to hybrid AC/DC microgrids -- 6.1 Introduction -- 6.1.1 Hybrid micro-grid -- 6.1.2 The topographies of hybrid micro-grid -- 6.1.3 Need of hybrid micro-grid -- 6.1.4 Comparison between conventional grid and hybrid micro-grid -- 6.2 Architecture of hybrid micro-grid -- 6.3 Architecture of AC-coupled hybrid micro-grid -- 6.4 Architecture of DC-coupled hybrid micro-grid -- 6.5 Architecture of AC-DC coupled hybrid micro-grid -- 6.6 Modeling of hybrid micro-grid components -- 6.6.1 PV system model -- 6.6.2 Wind energy system model -- 6.6.3 Biomass energy model -- 6.6.4 Small-hydro system model -- 6.6.5 Battery model -- 6.6.6 Fuel cell model -- 6.7 Power quality issues in hybrid micro-grid -- 6.8 Control strategies and energy management system for hybrid micro-grid -- 6.8.1 AC-coupled hybrid micro-grid -- 6.8.2 DC-coupled hybrid micro-grid -- 6.8.3 AC-DC coupled hybrid micro-grid -- 6.8.4 Transition between grid-connected and standalone operation mode for energy management -- 6.9 Modeling of hybrid micro-grid -- 6.9.1 Modeling of PV and wind hybrid micro-grid -- 6.9.2 Modeling of PV, wind and biomass hybrid micro-grid -- 6.9.3 Modeling of PV, wind, biomass and small hydro hybrid micro-grid -- 6.10 Mathematical modeling of hybrid micro-grid -- 6.10.1 Modeling of AC micro-grid -- 6.10.2 Modeling of DC micro-grid -- 6.11 Coordination control of the converters -- 6.11.1 Isolated mode.
|
650 |
|
0 |
|a Microgrids (Smart power grids)
|
650 |
|
6 |
|a Minir�esaux �electriques intelligents.
|0 (CaQQLa)000301635
|
650 |
|
7 |
|a Microgrids (Smart power grids)
|2 fast
|0 (OCoLC)fst01938639
|
700 |
1 |
|
|a Guerrero, Josep M.
|
700 |
1 |
|
|a Kandari, Ritu.
|
776 |
0 |
8 |
|i Print version:
|z 032385463X
|z 9780323854634
|w (OCoLC)1241443563
|
776 |
0 |
8 |
|i Print version:
|t MICROGRIDS.
|d [S.l.] : ELSEVIER ACADEMIC PRESS, 2021
|z 032385463X
|w (OCoLC)1241443563
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780323854634
|z Texto completo
|