Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems /
Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems outlines the basic principles of miniaturized analytical devices, such as spectrometric, separation, imaging and electrochemical miniaturized instruments. Concepts such as smartphone-enabled miniaturized dete...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands ; Oxford, United Kingdom ; Cambridge, MA :
Elsevier,
[2022]
|
Colección: | Micro & nano technologies.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front cover
- Half title
- Full title
- Copyright
- Contents
- Contributors
- Section 1
- Fundamentals
- 1
- Miniaturization-An introduction to miniaturized analytical devices
- 1.1 Introduction
- 1.2 Miniaturization in analytical chemistry
- 1.2.1 Miniaturization of sample preparation step
- 1.2.1.1 Microextraction
- 1.2.1.2 Microfluidics
- 1.2.2 Miniaturization of separation step
- 1.2.3 Miniaturization of detection methods
- 1.2.3.1 Electrochemical detection
- 1.2.3.2 Optical detection
- 1.3 Conclusions
- References
- 2
- Spectrometric miniaturized instruments
- 2.1 Introduction
- 2.2 Portable spectrometric miniaturized instrument (PSMI)
- 2.2.1 PSMI spectrophotometers
- 2.2.1.1 UV-Vis and UV-Vis-NIR spectrophotometers
- 2.2.1.2 IR spectrophotometer
- 2.2.2 PSMI spectrometers
- 2.2.2.1 Fluorescence spectrometers
- 2.2.2.2 Raman spectrometers
- 2.2.2.3 Elemental spectrometers
- 2.2.2.4 NMR spectrometers
- 2.2.2.5 Mass spectrometers
- 2.3 Smartphone-enabled spectrometric miniaturized instruments
- 2.3.1 Colorimetric SESMIs
- 2.3.2 Photoluminescent SESMIs
- 2.3.3 Biochemiluminescent SESMIs
- 2.4 Conclusions
- References
- 3
- Separation miniaturized instruments
- 3.1 Introduction
- 3.2 Gas chromatography
- 3.3 High pressure/performance liquid chromatography
- 3.4 Capillary electrophoresis
- 3.5 Ion chromatography
- 3.6 Hyphenated separation instruments
- 3.7 Conclusions
- References
- 4
- Fabrication methods of miniaturized analysis
- 4.1 Introduction
- 4.2 Types of miniaturized analysis system
- 4.3 Fabrication methods of paper-based miniaturized analysis system
- 4.4 Fabrication of polymer-based miniaturized analysis system
- 4.5 Fabrication methods of glass-based miniaturized analysis system.
- 4.6 Fabrication methods of silicon-based miniaturized analysis system
- 4.7 Challenges and strategies to improve sensitivity, accuracy, multiplexed detection, and calibration free allowing for m ...
- 4.8 Conclusion and future perspectives
- Acknowledgment
- References
- 5
- Miniaturized bioelectrochemical devices
- 5.1 Introduction
- 5.2 Portable bioelectrochemical devices design
- 5.2.1 Principles of potentiostats
- 5.2.2 Power supply
- 5.2.2.1 General power supply devices
- 5.2.2.2 Power supply from body harvesting
- 5.2.2.3 Current readout circuitry
- 5.2.3 Cell configurations
- 5.2.4 Communications
- 5.2.5 A practical example of PBDs
- 5.3 Lab-on-a-chip PBDs devices
- 5.3.1 Implantable PBDs
- 5.3.1.1 Power supply for implantable PBDs
- 5.3.1.2 Communication in implantable PBDs
- 5.3.1.3 Microfluidics in implantable PBDs
- 5.3.1.4 Design considerations of implantable PBDs
- 5.3.2 Wearable PBDs
- 5.3.2.1 Classification of wearable PBDs
- 5.3.2.2 Design considerations of wearable PBDs
- 5.4 Conclusions
- References
- 6
- Electrochemical miniaturized devices
- 6.1 Overview
- 6.1.1 Form factors, application constraints and driving forces
- 6.1.2 Chemical (bio)sensors
- 6.1.3 State of the art
- 6.1.4 Beyond the state of the art
- 6.2 Fundamentals of electrochemical (bio)sensors
- 6.2.1 Electrochemical techniques
- 6.2.1.1 Potentiometry
- 6.2.1.2 Chronoamperometry
- 6.2.1.3 Voltammetry
- 6.2.1.4 Electrochemical impedance spectroscopy
- 6.2.2 Analytes of interest
- 6.2.3 Sensor technologies and fabrication
- 6.3 Instrumentation electronics
- 6.3.1 Integration technologies overview
- 6.3.2 Custom integrated circuits for electrochemical instrumentation
- 6.3.3 Flexible electronics
- References
- 7
- Separation technologies in microfluidics
- 7.1 Introduction.
- 7.2 Chemical separations
- 7.3 Particle separations
- 7.3.1 Passive particle separation systems
- 7.3.2 Active particle separation systems
- 7.3.3 Hybrid separation systems
- 7.4 Discussion and conclusion
- References
- 8
- Portable microplanar extraction, separation, and quantification devices for bioanalytical and environmental engineerin ...
- 8.1 Occurrence and quantification of priority substances in water ecosystems-the problem overview based on the European Un ...
- 8.2 Advances in development of portable microdevices for detection of various pollutants in water, sewage, and complex bio ...
- 8.3 Development of portable extraction devices, planar electrophoresis, and microplanar thin-layer chromatography for isol ...
- Authors contributions and additional statements
- References
- 9
- Approaches to microholes for fabrication of microdevices
- 9.1 Introduction
- 9.2 Methods for tool wear improvement
- 9.2.1 CNTs/graphene
- 9.3 Patterning
- 9.4 Embedding
- 9.5 In situ CNT growth
- 9.6 Microhole applications
- 9.7 Conclusions
- References
- 10
- Photonic crystal-based optical devices for photonic intergraded circuits
- 10.1 Introduction
- 10.2 History of photonic crystals
- 10.3 Types of photonic crystals
- 10.3.1 One-dimensional PCs
- 10.3.2 Two-dimensional PCs
- 10.3.2.1 Band diagram
- 10.3.2.2 TE and TM modes
- 10.3.2.3 Gapmaps
- 10.3.2.4 Defects in a 2D photonic crystal lattice
- 10.3.3 Three-dimensional PCs
- 10.3.3.1 Diamond structure
- 10.3.3.2 Yablonovite structure
- 10.3.3.3 Woodpile structure
- 10.3.3.4 Inverse opal structure
- 10.3.3.5 FCC structure
- 10.3.3.6 Square spiral structure
- 10.3.3.7 Scaffolding structure
- 10.3.3.8 Tunable 3D inverse opal structure
- 10.4 Numerical methods
- 10.4.1 PWE method
- 10.4.2 FDTD method.
- 10.5 Functional parameters
- 10.5.1 Quality factor ( Q )
- 10.5.2 Sensitivity ( S )
- 10.5.3 Resolution ( R )
- 10.5.4 Detection limit ( D )
- 10.5.5 Figure of merit (FOM)
- 10.5.6 Transmission efficiency ( � )
- 10.5.7 Dynamic range (DR)
- 10.5.8 Extinction ratio or contrast ratio
- 10.5.9 Insertion loss and propagation loss
- 10.5.10 Crosstalk
- 10.5.11 Response time and bit rate
- 10.6 Photonic crystal-based demultiplexer
- 10.6.1 Four-channel hybrid DWDM demultiplexer
- 10.6.2 Eight-channel hybrid DWDM demultiplexer
- 10.6.3 DWDM demultiplexer
- 10.7 Applications of 2DPCs
- 10.7.1 Lasers
- 10.7.2 Multiplexer
- 10.7.3 Demultiplexer
- 10.7.4 Waveguide
- 10.7.5 Filters
- 10.7.6 Waveguide splitter
- 10.7.7 Optical sensors
- 10.7.8 Photonic crystal fiber
- 10.7.9 Logic gates
- 10.7.10 Circulators
- 10.8 Conclusion
- References
- Section 2
- Applications of mobile devices in miniaturized analysis
- 11
- Lab-on-a-chip miniaturized analytical devices
- 11.1 Introduction
- 11.2 Lab-on-a-chip devices for clinical diagnostics
- 11.3 Lab-on-a-chip devices for integrated bioanalysis
- 11.3.1 Integrated continuous-flow biosensors
- 11.3.2 Droplet-based microfluidic biosensors
- 11.3.3 Digital microfluidic-based biosensors
- 11.4 Lab-on-a-chip devices for environmental monitoring
- 11.5 Lab-on-a-chip devices for quality control
- 11.5.1 Quality control in food science
- 11.5.2 Quality control in pharmaceutical science
- 11.6 Point-of-care applications
- 11.7 Conclusions
- References
- 12
- Smartphone-enabled miniaturized analytical devices
- 12.1 Introduction
- 12.2 Colorimetric applications
- 12.3 Photoluminescent applications
- 12.4 Biochemiluminescent applications
- 12.5 Electrochemical applications
- 12.6 Point-of-care applications.
- 12.6.1 Colorimetric chemical-based detection
- 12.6.2 Fluorescence-based detection
- 12.6.3 Electrochemical-based detection
- 12.7 Implantable sensors
- 12.8 Wearable sensors
- 12.9 Future perspectives
- References
- 13
- Smartphone-based chemical sensors and biosensors for biomedical applications
- 13.1 Introduction
- 13.2 Smartphone-based electrochemistry sensors
- 13.2.1 Amperometry sensors
- 13.2.2 Potentiometry sensors
- 13.2.3 Impedimetry sensors
- 13.3 Smartphone-based spectroscopy sensors
- 13.3.1 Electrochemiluminescence sensors
- 13.3.2 Local surface plasmon resonance sensors
- 13.3.3 Other optical sensors
- 13.4 Smartphone-based wearable sensors for biomedical applications
- 13.4.1 Epidermal sensors
- 13.4.2 Respiration sensors
- 13.4.3 Other wearable sensors
- 13.5 Conclusion and future prospect
- Acknowledgment
- References
- 14
- Biomedical applications of mobile devices in miniaturized analysis
- 14.1 Introduction
- 14.1.1 Features of miniaturization
- 14.2 Miniaturized analytical systems for qualitative information
- 14.2.1 Miniaturized system for clinical sorting and diagnosis
- 14.2.1.1 Miniaturized system for clinical sorting
- 14.2.1.2 Miniaturized system for diagnostic imaging
- 14.2.1.3 Miniaturized phased-array ultrasound and photoacoustic endoscopic imaging system
- 14.3 Smartphone-enabled miniaturized biosensing systems
- 14.3.1 Colorimetric sensors
- 14.3.2 Fluorescence sensors
- 14.3.3 Luminescence sensors
- 14.3.4 Electrochemical biosensors
- 14.4 Commercialized miniaturized biosensors
- 14.4.1 Pressure sensors/meters
- 14.4.2 Digital multimeters
- 14.4.3 Electronic balance
- 14.4.4 Thermometers
- 14.4.5 pH meters
- 14.4.6 Glucose meters
- 14.5 Conclusions and perspectives
- References
- 15
- Lab-on-a-chip analytical devices
- 15.1 Introduction.