Cargando…

Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems /

Micro- and Nanotechnology Enabled Applications for Portable Miniaturized Analytical Systems outlines the basic principles of miniaturized analytical devices, such as spectrometric, separation, imaging and electrochemical miniaturized instruments. Concepts such as smartphone-enabled miniaturized dete...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Thomas, Sabu (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands ; Oxford, United Kingdom ; Cambridge, MA : Elsevier, [2022]
Colección:Micro & nano technologies.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front cover
  • Half title
  • Full title
  • Copyright
  • Contents
  • Contributors
  • Section 1
  • Fundamentals
  • 1
  • Miniaturization-An introduction to miniaturized analytical devices
  • 1.1 Introduction
  • 1.2 Miniaturization in analytical chemistry
  • 1.2.1 Miniaturization of sample preparation step
  • 1.2.1.1 Microextraction
  • 1.2.1.2 Microfluidics
  • 1.2.2 Miniaturization of separation step
  • 1.2.3 Miniaturization of detection methods
  • 1.2.3.1 Electrochemical detection
  • 1.2.3.2 Optical detection
  • 1.3 Conclusions
  • References
  • 2
  • Spectrometric miniaturized instruments
  • 2.1 Introduction
  • 2.2 Portable spectrometric miniaturized instrument (PSMI)
  • 2.2.1 PSMI spectrophotometers
  • 2.2.1.1 UV-Vis and UV-Vis-NIR spectrophotometers
  • 2.2.1.2 IR spectrophotometer
  • 2.2.2 PSMI spectrometers
  • 2.2.2.1 Fluorescence spectrometers
  • 2.2.2.2 Raman spectrometers
  • 2.2.2.3 Elemental spectrometers
  • 2.2.2.4 NMR spectrometers
  • 2.2.2.5 Mass spectrometers
  • 2.3 Smartphone-enabled spectrometric miniaturized instruments
  • 2.3.1 Colorimetric SESMIs
  • 2.3.2 Photoluminescent SESMIs
  • 2.3.3 Biochemiluminescent SESMIs
  • 2.4 Conclusions
  • References
  • 3
  • Separation miniaturized instruments
  • 3.1 Introduction
  • 3.2 Gas chromatography
  • 3.3 High pressure/performance liquid chromatography
  • 3.4 Capillary electrophoresis
  • 3.5 Ion chromatography
  • 3.6 Hyphenated separation instruments
  • 3.7 Conclusions
  • References
  • 4
  • Fabrication methods of miniaturized analysis
  • 4.1 Introduction
  • 4.2 Types of miniaturized analysis system
  • 4.3 Fabrication methods of paper-based miniaturized analysis system
  • 4.4 Fabrication of polymer-based miniaturized analysis system
  • 4.5 Fabrication methods of glass-based miniaturized analysis system.
  • 4.6 Fabrication methods of silicon-based miniaturized analysis system
  • 4.7 Challenges and strategies to improve sensitivity, accuracy, multiplexed detection, and calibration free allowing for m ...
  • 4.8 Conclusion and future perspectives
  • Acknowledgment
  • References
  • 5
  • Miniaturized bioelectrochemical devices
  • 5.1 Introduction
  • 5.2 Portable bioelectrochemical devices design
  • 5.2.1 Principles of potentiostats
  • 5.2.2 Power supply
  • 5.2.2.1 General power supply devices
  • 5.2.2.2 Power supply from body harvesting
  • 5.2.2.3 Current readout circuitry
  • 5.2.3 Cell configurations
  • 5.2.4 Communications
  • 5.2.5 A practical example of PBDs
  • 5.3 Lab-on-a-chip PBDs devices
  • 5.3.1 Implantable PBDs
  • 5.3.1.1 Power supply for implantable PBDs
  • 5.3.1.2 Communication in implantable PBDs
  • 5.3.1.3 Microfluidics in implantable PBDs
  • 5.3.1.4 Design considerations of implantable PBDs
  • 5.3.2 Wearable PBDs
  • 5.3.2.1 Classification of wearable PBDs
  • 5.3.2.2 Design considerations of wearable PBDs
  • 5.4 Conclusions
  • References
  • 6
  • Electrochemical miniaturized devices
  • 6.1 Overview
  • 6.1.1 Form factors, application constraints and driving forces
  • 6.1.2 Chemical (bio)sensors
  • 6.1.3 State of the art
  • 6.1.4 Beyond the state of the art
  • 6.2 Fundamentals of electrochemical (bio)sensors
  • 6.2.1 Electrochemical techniques
  • 6.2.1.1 Potentiometry
  • 6.2.1.2 Chronoamperometry
  • 6.2.1.3 Voltammetry
  • 6.2.1.4 Electrochemical impedance spectroscopy
  • 6.2.2 Analytes of interest
  • 6.2.3 Sensor technologies and fabrication
  • 6.3 Instrumentation electronics
  • 6.3.1 Integration technologies overview
  • 6.3.2 Custom integrated circuits for electrochemical instrumentation
  • 6.3.3 Flexible electronics
  • References
  • 7
  • Separation technologies in microfluidics
  • 7.1 Introduction.
  • 7.2 Chemical separations
  • 7.3 Particle separations
  • 7.3.1 Passive particle separation systems
  • 7.3.2 Active particle separation systems
  • 7.3.3 Hybrid separation systems
  • 7.4 Discussion and conclusion
  • References
  • 8
  • Portable microplanar extraction, separation, and quantification devices for bioanalytical and environmental engineerin ...
  • 8.1 Occurrence and quantification of priority substances in water ecosystems-the problem overview based on the European Un ...
  • 8.2 Advances in development of portable microdevices for detection of various pollutants in water, sewage, and complex bio ...
  • 8.3 Development of portable extraction devices, planar electrophoresis, and microplanar thin-layer chromatography for isol ...
  • Authors contributions and additional statements
  • References
  • 9
  • Approaches to microholes for fabrication of microdevices
  • 9.1 Introduction
  • 9.2 Methods for tool wear improvement
  • 9.2.1 CNTs/graphene
  • 9.3 Patterning
  • 9.4 Embedding
  • 9.5 In situ CNT growth
  • 9.6 Microhole applications
  • 9.7 Conclusions
  • References
  • 10
  • Photonic crystal-based optical devices for photonic intergraded circuits
  • 10.1 Introduction
  • 10.2 History of photonic crystals
  • 10.3 Types of photonic crystals
  • 10.3.1 One-dimensional PCs
  • 10.3.2 Two-dimensional PCs
  • 10.3.2.1 Band diagram
  • 10.3.2.2 TE and TM modes
  • 10.3.2.3 Gapmaps
  • 10.3.2.4 Defects in a 2D photonic crystal lattice
  • 10.3.3 Three-dimensional PCs
  • 10.3.3.1 Diamond structure
  • 10.3.3.2 Yablonovite structure
  • 10.3.3.3 Woodpile structure
  • 10.3.3.4 Inverse opal structure
  • 10.3.3.5 FCC structure
  • 10.3.3.6 Square spiral structure
  • 10.3.3.7 Scaffolding structure
  • 10.3.3.8 Tunable 3D inverse opal structure
  • 10.4 Numerical methods
  • 10.4.1 PWE method
  • 10.4.2 FDTD method.
  • 10.5 Functional parameters
  • 10.5.1 Quality factor ( Q )
  • 10.5.2 Sensitivity ( S )
  • 10.5.3 Resolution ( R )
  • 10.5.4 Detection limit ( D )
  • 10.5.5 Figure of merit (FOM)
  • 10.5.6 Transmission efficiency ( � )
  • 10.5.7 Dynamic range (DR)
  • 10.5.8 Extinction ratio or contrast ratio
  • 10.5.9 Insertion loss and propagation loss
  • 10.5.10 Crosstalk
  • 10.5.11 Response time and bit rate
  • 10.6 Photonic crystal-based demultiplexer
  • 10.6.1 Four-channel hybrid DWDM demultiplexer
  • 10.6.2 Eight-channel hybrid DWDM demultiplexer
  • 10.6.3 DWDM demultiplexer
  • 10.7 Applications of 2DPCs
  • 10.7.1 Lasers
  • 10.7.2 Multiplexer
  • 10.7.3 Demultiplexer
  • 10.7.4 Waveguide
  • 10.7.5 Filters
  • 10.7.6 Waveguide splitter
  • 10.7.7 Optical sensors
  • 10.7.8 Photonic crystal fiber
  • 10.7.9 Logic gates
  • 10.7.10 Circulators
  • 10.8 Conclusion
  • References
  • Section 2
  • Applications of mobile devices in miniaturized analysis
  • 11
  • Lab-on-a-chip miniaturized analytical devices
  • 11.1 Introduction
  • 11.2 Lab-on-a-chip devices for clinical diagnostics
  • 11.3 Lab-on-a-chip devices for integrated bioanalysis
  • 11.3.1 Integrated continuous-flow biosensors
  • 11.3.2 Droplet-based microfluidic biosensors
  • 11.3.3 Digital microfluidic-based biosensors
  • 11.4 Lab-on-a-chip devices for environmental monitoring
  • 11.5 Lab-on-a-chip devices for quality control
  • 11.5.1 Quality control in food science
  • 11.5.2 Quality control in pharmaceutical science
  • 11.6 Point-of-care applications
  • 11.7 Conclusions
  • References
  • 12
  • Smartphone-enabled miniaturized analytical devices
  • 12.1 Introduction
  • 12.2 Colorimetric applications
  • 12.3 Photoluminescent applications
  • 12.4 Biochemiluminescent applications
  • 12.5 Electrochemical applications
  • 12.6 Point-of-care applications.
  • 12.6.1 Colorimetric chemical-based detection
  • 12.6.2 Fluorescence-based detection
  • 12.6.3 Electrochemical-based detection
  • 12.7 Implantable sensors
  • 12.8 Wearable sensors
  • 12.9 Future perspectives
  • References
  • 13
  • Smartphone-based chemical sensors and biosensors for biomedical applications
  • 13.1 Introduction
  • 13.2 Smartphone-based electrochemistry sensors
  • 13.2.1 Amperometry sensors
  • 13.2.2 Potentiometry sensors
  • 13.2.3 Impedimetry sensors
  • 13.3 Smartphone-based spectroscopy sensors
  • 13.3.1 Electrochemiluminescence sensors
  • 13.3.2 Local surface plasmon resonance sensors
  • 13.3.3 Other optical sensors
  • 13.4 Smartphone-based wearable sensors for biomedical applications
  • 13.4.1 Epidermal sensors
  • 13.4.2 Respiration sensors
  • 13.4.3 Other wearable sensors
  • 13.5 Conclusion and future prospect
  • Acknowledgment
  • References
  • 14
  • Biomedical applications of mobile devices in miniaturized analysis
  • 14.1 Introduction
  • 14.1.1 Features of miniaturization
  • 14.2 Miniaturized analytical systems for qualitative information
  • 14.2.1 Miniaturized system for clinical sorting and diagnosis
  • 14.2.1.1 Miniaturized system for clinical sorting
  • 14.2.1.2 Miniaturized system for diagnostic imaging
  • 14.2.1.3 Miniaturized phased-array ultrasound and photoacoustic endoscopic imaging system
  • 14.3 Smartphone-enabled miniaturized biosensing systems
  • 14.3.1 Colorimetric sensors
  • 14.3.2 Fluorescence sensors
  • 14.3.3 Luminescence sensors
  • 14.3.4 Electrochemical biosensors
  • 14.4 Commercialized miniaturized biosensors
  • 14.4.1 Pressure sensors/meters
  • 14.4.2 Digital multimeters
  • 14.4.3 Electronic balance
  • 14.4.4 Thermometers
  • 14.4.5 pH meters
  • 14.4.6 Glucose meters
  • 14.5 Conclusions and perspectives
  • References
  • 15
  • Lab-on-a-chip analytical devices
  • 15.1 Introduction.