Innovation in nano-polysaccharides for eco-sustainability : from science to industrial applications /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
[2022]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Innovation in Nano-polysaccharides for Eco-sustainability
- Copyright Page
- Contents
- List of contributors
- Preface
- 1 Nanopolysaccharides (polysaccharide-based nanoparticles): perspectives and applications
- 1.1 Introduction and classification of polysaccharides
- 1.2 Composition of nanopolysaccharides
- 1.3 Characterization techniques used for nanopolysaccharides
- 1.4 Applications of nanopolysaccharides
- 1.4.1 As antimicrobial and antiviralagent
- 1.4.2 As anticancer
- 1.4.3 In wound healing
- 1.4.4 In targeted delivery
- 1.4.5 In biosensing
- 1.4.6 In DNA delivery
- 1.4.7 In food and agriculture
- 1.4.8 As catalyst
- 1.5 Conclusions and future perspective
- Acknowledgments
- References
- 2 Nanopolysaccharides: fundamentals, isolation, and applications
- 2.1 Introduction
- 2.2 Fundamentals of nanostructured polysaccharides from plant-based resources
- 2.2.1 Lignocellulose
- 2.2.1.1 Structure and properties of nanocellulose from lignocellulose
- 2.2.1.2 Isolation of nanostructured cellulose from lignocellulose
- 2.2.2 Starch
- 2.2.2.1 Structure and properties of nanostructured starch
- 2.2.2.2 Isolation of nanostructured starch
- 2.3 Fundamentals of nanostructured polysaccharides from animal-based resources
- 2.3.1 Chitin/chitosan
- 2.3.1.1 Structure and properties of nanochitin and nanochitosan
- 2.3.1.2 Isolation of nanostructured chitin and chitosan
- 2.3.2 Glycogen
- 2.3.2.1 Structure and properties of nanoglycogen
- 2.3.2.2 Modification method of nanostructured glycogen
- 2.3.3 Tunicate
- 2.3.3.1 Structure and properties of tunicate nanocellulose
- 2.3.3.2 Isolation of nanostructured cellulose from tunicate
- 2.4 Fundamentals of nanostructured polysaccharides from algae resources
- 2.4.1 Macroalgae
- 2.4.1.1 Structure and properties of nanostructured alginate and carrageenan.
- 2.4.1.2 Isolation of nanostructured phycocolloids
- 2.4.2 Algae nanocellulose
- 2.4.2.1 Structure and properties of algae nanocellulose
- 2.4.2.2 Isolation of nanostructured cellulose from algae
- 2.5 Applications
- 2.5.1 Health
- 2.5.2 Environment
- 2.5.3 Energy
- 2.5.4 Engineering product and others
- 2.6 Conclusion
- References
- 3 Fundamentals of processing and characterization of polysaccharide nanocrystal-based materials
- 3.1 Introduction
- 3.1.1 Cellulose nanocrystals
- 3.1.2 Processing of CNCs/PNCs
- 3.1.3 Preparation of cellulose nanocrystals
- 3.1.3.1 Starch nanocrystals
- 3.1.3.2 Isolation of chitin nanocrystals
- 3.1.3.3 Use of ionic liquid
- 3.1.3.4 Preparation of some biologically active polysaccharide from plant source
- 3.2 Characterization
- 3.3 Fourier transform infrared spectroscopy
- 3.4 SEM/TEM
- 3.4.1 Thermal analysis
- 3.5 X-ray diffraction
- 3.6 Anticancerous activities
- 3.7 Conclusion
- References
- 4 The composition of polysaccharides: monosaccharides and binding, group decorating, polysaccharides chains
- 4.1 Introduction
- 4.2 Carbohydrates and its classification
- 4.2.1 Monosaccharides
- 4.2.1.1 Classification of monosaccharide
- 4.2.1.1.1 Classification based on number of carbon atoms
- 4.2.1.1.2 Classification based on different types of carbonyl group
- 4.2.1.2 Properties
- 4.2.1.2.1 Physical properties
- 4.2.1.2.2 Chemical properties
- 4.2.1.3 Examples of monosaccharide (glucose)
- 4.2.1.3.1 Types of glucose
- 4.2.1.3.2 Occurrence
- 4.2.1.3.3 Properties
- 4.2.1.3.4 Structure of glucose
- 4.2.2 Oligosaccharide
- 4.2.2.1 Types of oligosaccharide
- 4.2.2.1.1 Disaccharide
- 4.2.2.1.2 Trisaccharide
- 4.2.3 Polysaccharide
- 4.2.3.1 Classification of polysaccharides
- 4.2.3.1.1 Homopolysaccahride
- 4.2.3.1.2 Heteropolysaccharide
- 4.2.3.2 Properties.
- 4.2.3.2.1 Physical properties
- 4.2.3.2.2 Chemical properties
- 4.3 Composition and linkages in polysaccharides
- 4.3.1 Starch
- 4.3.2 Cellulose
- 4.3.3 Chitin
- 4.3.4 Cellulose nanocrystals and chitin nanocrystals
- 4.4 Decorating groups in polysaccharides
- 4.5 Polysaccharides chains
- 4.6 Binding group and linkages of polysaccharide
- 4.7 Summary
- References
- 5 Understanding how the substituents of polysaccharides influence physical properties
- 5.1 Introduction
- 5.2 Characteristics and classification of polysaccharides
- 5.3 Influence of polysaccharide substituents on physical properties
- 5.3.1 Solubility
- 5.3.2 Stiffness and crystallinity
- 5.3.3 Hygroscopicity
- 5.3.4 Stability
- 5.3.5 Thermal properties
- 5.3.6 Intrinsic viscosity
- 5.4 Impact of substituents of functionalized polysaccharide derivatives
- 5.5 Understanding the pattern of linkage and conformation of carbohydrates
- 5.6 Polysaccharides in medical applications
- 5.6.1 Polysaccharides in drug delivery
- 5.6.2 Nanoparticle drug delivery nanoparticles
- 5.6.3 Polysaccharides as functional foods and nutriceuticals
- 5.7 Conclusions and future perspectives
- Acknowledgments
- Declaration of competing interest
- References
- 6 Surface modification of polysaccharide nanocrystals
- 6.1 Introduction
- 6.2 Surface alchemy of polysaccharide nanocrystals
- 6.3 Objective and strategies of surface modification
- 6.4 Diverse methods of surface modification of polysaccharide nanocrystals
- 6.4.1 Strategy of physical modifications
- 6.4.1.1 Adsorption of surfactants
- 6.4.1.1.1 Cationic surfactants
- 6.4.1.1.2 Anionic surfactants
- 6.4.1.1.3 Nonionic surfactants
- 6.4.1.2 Adsorption of macromolecules
- 6.4.1.2.1 Cationic and anionic polyelectrolytes
- 6.4.1.2.2 Amphoteric polymers
- 6.4.1.2.3 Block copolymers
- 6.4.1.2.4 Adsorption of enzymes.
- 6.4.2 Strategy for chemical modifications
- 6.4.2.1 Acetylation and esterification
- 6.4.2.2 Silylation
- 6.4.2.3 Tempo-mediated oxidation
- 6.4.2.4 Isocyanate carboamination
- 6.4.2.5 Cationization of polysaccharide nanocrystals
- 6.4.2.6 Self-cross-linking of polysaccharide nanocrystals
- 6.4.3 Polymer-grafting techniques
- 6.4.3.1 Grafting onto approach
- 6.4.3.1.1 Isocyanate-mediated reaction
- 6.4.3.1.2 Click chemistry
- 6.4.3.2 Grafting from approach
- 6.4.3.2.1 Ring-opening polymerization
- 6.4.3.2.2 Living radical polymerization
- 6.5 Conclusions and future perspectives
- Acknowledgment
- Declaration of competing interest
- References
- 7 Nanostructured polysaccharide-based materials obtained from renewable resources and uses
- 7.1 Introduction
- 7.2 Types of polysaccharide-based nanocomposites
- 7.3 Polysaccharides in packaging
- 7.3.1 Edible films and coatings
- 7.3.2 Active packaging
- 7.3.3 Carriers of antioxidant and antimicrobial compounds
- 7.3.4 Carrier of probiotics
- 7.3.5 Flavor encapsulation
- 7.4 Water treatment
- 7.4.1 Organic pollutants
- 7.4.2 Heavy metals and inorganic ions
- 7.5 Energy applications
- 7.5.1 Polysaccharide-based nanocomposites in solar cells
- 7.5.2 Polysaccharide-based nanocomposites for lithium ion batteries
- 7.5.3 Nanocellulose-based nanocomposites for supercapacitors
- 7.5.4 Polysaccharide-based hybrid membranes for CO2 separation
- 7.6 Future prospects
- References
- 8 Nanopolysaccharides and pharmaceutical applications
- List of abbreviation
- 8.1 Introduction
- 8.2 Pharmaceutical applications of nanopolysaccharides
- 8.2.1 Drug-delivery system
- 8.2.2 Molecular imaging tool
- 8.2.3 Disease treatment and therapy
- 8.2.4 Biosensing
- 8.3 Fabrication of nanopolysaccharide used for pharmaceutical applications
- 8.3.1 Nano gelation/suspension/emulsion.
- 8.3.2 Self-assembled nanoparticles
- 8.3.3 Grafting
- 8.3.4 Cross-linking
- 8.3.5 Metal-based polysaccharide nanoforms
- 8.3.6 Nanoprecipitation method
- 8.4 Conclusions and future prospects
- References
- 9 Nanocellulose: a sustainable nanomaterial for controlled drug delivery applications
- 9.1 Introduction
- 9.1.1 Evolution of controlled drug delivery
- 9.1.2 Significance of controlled drug delivery
- 9.1.3 Hydrogels for controlled drug delivery
- 9.1.4 Biobased hydrogel materials
- 9.2 Nanocellulose-based hydrogels
- 9.2.1 Nanocellulose
- 9.2.1.1 Bacterial nanocellulose
- 9.2.1.2 Cellulose nanocrystals
- 9.2.1.3 Cellulose nanofibers
- 9.2.2 Benefits of cellulose-based nanohydrogels
- 9.2.2.1 Abundance and renewability
- 9.2.2.2 High hydrophilicity and swelling capacity
- 9.2.2.3 High surface area
- 9.2.2.4 High surface functionality
- 9.2.2.5 Mechanical stability
- 9.2.2.6 Sustainability and facile preparation
- 9.2.2.7 Biocompatibility
- 9.2.3 Challenges for cellulose-based nanohydrogels
- 9.2.3.1 Spatial and temporal control of drug release
- 9.2.3.2 Drug conjugation
- 9.2.3.3 Nanocellulose characterization
- 9.2.3.4 Cost
- 9.3 Nanocellulose hydrogel-drug delivery systems
- 9.3.1 Nanocellulose hydrogel forms
- 9.3.2 Mechanisms of drug loading
- 9.3.3 Mechanisms of drug release
- 9.3.4 Scope of book chapter
- 9.4 Cellulose nanocrystal hydrogels for controlled drug delivery
- 9.4.1 Overview of cellulose nanocrystal hydrogels
- 9.4.2 Cellulose nanocrystal cross-linked nanocomposite hydrogels
- 9.4.3 Physically cross-linked cellulose nanocrystal hydrogels
- 9.4.4 Chemically cross-linked cellulose nanocrystal hydrogels
- 9.4.5 List of cellulose nanocrystal hydrogels
- 9.5 Cellulose nanofiber-based hydrogels for controlled drug delivery
- 9.5.1 Overview of cellulose nanofiber hydrogels.