Cargando…

Innovation in nano-polysaccharides for eco-sustainability : from science to industrial applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Singh, Preeti (Materials scientist) (Editor ), Manzoor, Kaiser (Editor ), Ikram, Saiqa (Editor ), Annamalai, Pratheep Kumar (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, [2022]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Innovation in Nano-polysaccharides for Eco-sustainability
  • Copyright Page
  • Contents
  • List of contributors
  • Preface
  • 1 Nanopolysaccharides (polysaccharide-based nanoparticles): perspectives and applications
  • 1.1 Introduction and classification of polysaccharides
  • 1.2 Composition of nanopolysaccharides
  • 1.3 Characterization techniques used for nanopolysaccharides
  • 1.4 Applications of nanopolysaccharides
  • 1.4.1 As antimicrobial and antiviralagent
  • 1.4.2 As anticancer
  • 1.4.3 In wound healing
  • 1.4.4 In targeted delivery
  • 1.4.5 In biosensing
  • 1.4.6 In DNA delivery
  • 1.4.7 In food and agriculture
  • 1.4.8 As catalyst
  • 1.5 Conclusions and future perspective
  • Acknowledgments
  • References
  • 2 Nanopolysaccharides: fundamentals, isolation, and applications
  • 2.1 Introduction
  • 2.2 Fundamentals of nanostructured polysaccharides from plant-based resources
  • 2.2.1 Lignocellulose
  • 2.2.1.1 Structure and properties of nanocellulose from lignocellulose
  • 2.2.1.2 Isolation of nanostructured cellulose from lignocellulose
  • 2.2.2 Starch
  • 2.2.2.1 Structure and properties of nanostructured starch
  • 2.2.2.2 Isolation of nanostructured starch
  • 2.3 Fundamentals of nanostructured polysaccharides from animal-based resources
  • 2.3.1 Chitin/chitosan
  • 2.3.1.1 Structure and properties of nanochitin and nanochitosan
  • 2.3.1.2 Isolation of nanostructured chitin and chitosan
  • 2.3.2 Glycogen
  • 2.3.2.1 Structure and properties of nanoglycogen
  • 2.3.2.2 Modification method of nanostructured glycogen
  • 2.3.3 Tunicate
  • 2.3.3.1 Structure and properties of tunicate nanocellulose
  • 2.3.3.2 Isolation of nanostructured cellulose from tunicate
  • 2.4 Fundamentals of nanostructured polysaccharides from algae resources
  • 2.4.1 Macroalgae
  • 2.4.1.1 Structure and properties of nanostructured alginate and carrageenan.
  • 2.4.1.2 Isolation of nanostructured phycocolloids
  • 2.4.2 Algae nanocellulose
  • 2.4.2.1 Structure and properties of algae nanocellulose
  • 2.4.2.2 Isolation of nanostructured cellulose from algae
  • 2.5 Applications
  • 2.5.1 Health
  • 2.5.2 Environment
  • 2.5.3 Energy
  • 2.5.4 Engineering product and others
  • 2.6 Conclusion
  • References
  • 3 Fundamentals of processing and characterization of polysaccharide nanocrystal-based materials
  • 3.1 Introduction
  • 3.1.1 Cellulose nanocrystals
  • 3.1.2 Processing of CNCs/PNCs
  • 3.1.3 Preparation of cellulose nanocrystals
  • 3.1.3.1 Starch nanocrystals
  • 3.1.3.2 Isolation of chitin nanocrystals
  • 3.1.3.3 Use of ionic liquid
  • 3.1.3.4 Preparation of some biologically active polysaccharide from plant source
  • 3.2 Characterization
  • 3.3 Fourier transform infrared spectroscopy
  • 3.4 SEM/TEM
  • 3.4.1 Thermal analysis
  • 3.5 X-ray diffraction
  • 3.6 Anticancerous activities
  • 3.7 Conclusion
  • References
  • 4 The composition of polysaccharides: monosaccharides and binding, group decorating, polysaccharides chains
  • 4.1 Introduction
  • 4.2 Carbohydrates and its classification
  • 4.2.1 Monosaccharides
  • 4.2.1.1 Classification of monosaccharide
  • 4.2.1.1.1 Classification based on number of carbon atoms
  • 4.2.1.1.2 Classification based on different types of carbonyl group
  • 4.2.1.2 Properties
  • 4.2.1.2.1 Physical properties
  • 4.2.1.2.2 Chemical properties
  • 4.2.1.3 Examples of monosaccharide (glucose)
  • 4.2.1.3.1 Types of glucose
  • 4.2.1.3.2 Occurrence
  • 4.2.1.3.3 Properties
  • 4.2.1.3.4 Structure of glucose
  • 4.2.2 Oligosaccharide
  • 4.2.2.1 Types of oligosaccharide
  • 4.2.2.1.1 Disaccharide
  • 4.2.2.1.2 Trisaccharide
  • 4.2.3 Polysaccharide
  • 4.2.3.1 Classification of polysaccharides
  • 4.2.3.1.1 Homopolysaccahride
  • 4.2.3.1.2 Heteropolysaccharide
  • 4.2.3.2 Properties.
  • 4.2.3.2.1 Physical properties
  • 4.2.3.2.2 Chemical properties
  • 4.3 Composition and linkages in polysaccharides
  • 4.3.1 Starch
  • 4.3.2 Cellulose
  • 4.3.3 Chitin
  • 4.3.4 Cellulose nanocrystals and chitin nanocrystals
  • 4.4 Decorating groups in polysaccharides
  • 4.5 Polysaccharides chains
  • 4.6 Binding group and linkages of polysaccharide
  • 4.7 Summary
  • References
  • 5 Understanding how the substituents of polysaccharides influence physical properties
  • 5.1 Introduction
  • 5.2 Characteristics and classification of polysaccharides
  • 5.3 Influence of polysaccharide substituents on physical properties
  • 5.3.1 Solubility
  • 5.3.2 Stiffness and crystallinity
  • 5.3.3 Hygroscopicity
  • 5.3.4 Stability
  • 5.3.5 Thermal properties
  • 5.3.6 Intrinsic viscosity
  • 5.4 Impact of substituents of functionalized polysaccharide derivatives
  • 5.5 Understanding the pattern of linkage and conformation of carbohydrates
  • 5.6 Polysaccharides in medical applications
  • 5.6.1 Polysaccharides in drug delivery
  • 5.6.2 Nanoparticle drug delivery nanoparticles
  • 5.6.3 Polysaccharides as functional foods and nutriceuticals
  • 5.7 Conclusions and future perspectives
  • Acknowledgments
  • Declaration of competing interest
  • References
  • 6 Surface modification of polysaccharide nanocrystals
  • 6.1 Introduction
  • 6.2 Surface alchemy of polysaccharide nanocrystals
  • 6.3 Objective and strategies of surface modification
  • 6.4 Diverse methods of surface modification of polysaccharide nanocrystals
  • 6.4.1 Strategy of physical modifications
  • 6.4.1.1 Adsorption of surfactants
  • 6.4.1.1.1 Cationic surfactants
  • 6.4.1.1.2 Anionic surfactants
  • 6.4.1.1.3 Nonionic surfactants
  • 6.4.1.2 Adsorption of macromolecules
  • 6.4.1.2.1 Cationic and anionic polyelectrolytes
  • 6.4.1.2.2 Amphoteric polymers
  • 6.4.1.2.3 Block copolymers
  • 6.4.1.2.4 Adsorption of enzymes.
  • 6.4.2 Strategy for chemical modifications
  • 6.4.2.1 Acetylation and esterification
  • 6.4.2.2 Silylation
  • 6.4.2.3 Tempo-mediated oxidation
  • 6.4.2.4 Isocyanate carboamination
  • 6.4.2.5 Cationization of polysaccharide nanocrystals
  • 6.4.2.6 Self-cross-linking of polysaccharide nanocrystals
  • 6.4.3 Polymer-grafting techniques
  • 6.4.3.1 Grafting onto approach
  • 6.4.3.1.1 Isocyanate-mediated reaction
  • 6.4.3.1.2 Click chemistry
  • 6.4.3.2 Grafting from approach
  • 6.4.3.2.1 Ring-opening polymerization
  • 6.4.3.2.2 Living radical polymerization
  • 6.5 Conclusions and future perspectives
  • Acknowledgment
  • Declaration of competing interest
  • References
  • 7 Nanostructured polysaccharide-based materials obtained from renewable resources and uses
  • 7.1 Introduction
  • 7.2 Types of polysaccharide-based nanocomposites
  • 7.3 Polysaccharides in packaging
  • 7.3.1 Edible films and coatings
  • 7.3.2 Active packaging
  • 7.3.3 Carriers of antioxidant and antimicrobial compounds
  • 7.3.4 Carrier of probiotics
  • 7.3.5 Flavor encapsulation
  • 7.4 Water treatment
  • 7.4.1 Organic pollutants
  • 7.4.2 Heavy metals and inorganic ions
  • 7.5 Energy applications
  • 7.5.1 Polysaccharide-based nanocomposites in solar cells
  • 7.5.2 Polysaccharide-based nanocomposites for lithium ion batteries
  • 7.5.3 Nanocellulose-based nanocomposites for supercapacitors
  • 7.5.4 Polysaccharide-based hybrid membranes for CO2 separation
  • 7.6 Future prospects
  • References
  • 8 Nanopolysaccharides and pharmaceutical applications
  • List of abbreviation
  • 8.1 Introduction
  • 8.2 Pharmaceutical applications of nanopolysaccharides
  • 8.2.1 Drug-delivery system
  • 8.2.2 Molecular imaging tool
  • 8.2.3 Disease treatment and therapy
  • 8.2.4 Biosensing
  • 8.3 Fabrication of nanopolysaccharide used for pharmaceutical applications
  • 8.3.1 Nano gelation/suspension/emulsion.
  • 8.3.2 Self-assembled nanoparticles
  • 8.3.3 Grafting
  • 8.3.4 Cross-linking
  • 8.3.5 Metal-based polysaccharide nanoforms
  • 8.3.6 Nanoprecipitation method
  • 8.4 Conclusions and future prospects
  • References
  • 9 Nanocellulose: a sustainable nanomaterial for controlled drug delivery applications
  • 9.1 Introduction
  • 9.1.1 Evolution of controlled drug delivery
  • 9.1.2 Significance of controlled drug delivery
  • 9.1.3 Hydrogels for controlled drug delivery
  • 9.1.4 Biobased hydrogel materials
  • 9.2 Nanocellulose-based hydrogels
  • 9.2.1 Nanocellulose
  • 9.2.1.1 Bacterial nanocellulose
  • 9.2.1.2 Cellulose nanocrystals
  • 9.2.1.3 Cellulose nanofibers
  • 9.2.2 Benefits of cellulose-based nanohydrogels
  • 9.2.2.1 Abundance and renewability
  • 9.2.2.2 High hydrophilicity and swelling capacity
  • 9.2.2.3 High surface area
  • 9.2.2.4 High surface functionality
  • 9.2.2.5 Mechanical stability
  • 9.2.2.6 Sustainability and facile preparation
  • 9.2.2.7 Biocompatibility
  • 9.2.3 Challenges for cellulose-based nanohydrogels
  • 9.2.3.1 Spatial and temporal control of drug release
  • 9.2.3.2 Drug conjugation
  • 9.2.3.3 Nanocellulose characterization
  • 9.2.3.4 Cost
  • 9.3 Nanocellulose hydrogel-drug delivery systems
  • 9.3.1 Nanocellulose hydrogel forms
  • 9.3.2 Mechanisms of drug loading
  • 9.3.3 Mechanisms of drug release
  • 9.3.4 Scope of book chapter
  • 9.4 Cellulose nanocrystal hydrogels for controlled drug delivery
  • 9.4.1 Overview of cellulose nanocrystal hydrogels
  • 9.4.2 Cellulose nanocrystal cross-linked nanocomposite hydrogels
  • 9.4.3 Physically cross-linked cellulose nanocrystal hydrogels
  • 9.4.4 Chemically cross-linked cellulose nanocrystal hydrogels
  • 9.4.5 List of cellulose nanocrystal hydrogels
  • 9.5 Cellulose nanofiber-based hydrogels for controlled drug delivery
  • 9.5.1 Overview of cellulose nanofiber hydrogels.