|
|
|
|
LEADER |
00000cam a2200000Ii 4500 |
001 |
SCIDIR_on1274198522 |
003 |
OCoLC |
005 |
20231120010608.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
211012t20222022ne o 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|e rda
|c YDX
|d OPELS
|d OCLCO
|d GZM
|d OCLCO
|d OCLCF
|d SFB
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1275356082
|
020 |
|
|
|a 9780128234457
|q (electronic bk.)
|
020 |
|
|
|a 0128234458
|q (electronic bk.)
|
020 |
|
|
|z 9780128234396
|
035 |
|
|
|a (OCoLC)1274198522
|z (OCoLC)1275356082
|
050 |
|
4 |
|a TP248.65.P64
|
082 |
0 |
4 |
|a 660.63
|2 23
|
245 |
0 |
0 |
|a Innovation in nano-polysaccharides for eco-sustainability :
|b from science to industrial applications /
|c edited by Preeti Singh, Kaiser Manzoor, Saiqa Ikram, Pratheep Kumar Annamalai.
|
264 |
|
1 |
|a Amsterdam :
|b Elsevier,
|c [2022]
|
264 |
|
4 |
|c �2022
|
300 |
|
|
|a 1 online resource (376 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
|
|
|a Description based on online resource; title from PDF title page (viewed on February 7, 2022).
|
505 |
0 |
|
|a Front Cover -- Innovation in Nano-polysaccharides for Eco-sustainability -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Nanopolysaccharides (polysaccharide-based nanoparticles): perspectives and applications -- 1.1 Introduction and classification of polysaccharides -- 1.2 Composition of nanopolysaccharides -- 1.3 Characterization techniques used for nanopolysaccharides -- 1.4 Applications of nanopolysaccharides -- 1.4.1 As antimicrobial and antiviralagent -- 1.4.2 As anticancer -- 1.4.3 In wound healing -- 1.4.4 In targeted delivery -- 1.4.5 In biosensing -- 1.4.6 In DNA delivery -- 1.4.7 In food and agriculture -- 1.4.8 As catalyst -- 1.5 Conclusions and future perspective -- Acknowledgments -- References -- 2 Nanopolysaccharides: fundamentals, isolation, and applications -- 2.1 Introduction -- 2.2 Fundamentals of nanostructured polysaccharides from plant-based resources -- 2.2.1 Lignocellulose -- 2.2.1.1 Structure and properties of nanocellulose from lignocellulose -- 2.2.1.2 Isolation of nanostructured cellulose from lignocellulose -- 2.2.2 Starch -- 2.2.2.1 Structure and properties of nanostructured starch -- 2.2.2.2 Isolation of nanostructured starch -- 2.3 Fundamentals of nanostructured polysaccharides from animal-based resources -- 2.3.1 Chitin/chitosan -- 2.3.1.1 Structure and properties of nanochitin and nanochitosan -- 2.3.1.2 Isolation of nanostructured chitin and chitosan -- 2.3.2 Glycogen -- 2.3.2.1 Structure and properties of nanoglycogen -- 2.3.2.2 Modification method of nanostructured glycogen -- 2.3.3 Tunicate -- 2.3.3.1 Structure and properties of tunicate nanocellulose -- 2.3.3.2 Isolation of nanostructured cellulose from tunicate -- 2.4 Fundamentals of nanostructured polysaccharides from algae resources -- 2.4.1 Macroalgae -- 2.4.1.1 Structure and properties of nanostructured alginate and carrageenan.
|
505 |
8 |
|
|a 2.4.1.2 Isolation of nanostructured phycocolloids -- 2.4.2 Algae nanocellulose -- 2.4.2.1 Structure and properties of algae nanocellulose -- 2.4.2.2 Isolation of nanostructured cellulose from algae -- 2.5 Applications -- 2.5.1 Health -- 2.5.2 Environment -- 2.5.3 Energy -- 2.5.4 Engineering product and others -- 2.6 Conclusion -- References -- 3 Fundamentals of processing and characterization of polysaccharide nanocrystal-based materials -- 3.1 Introduction -- 3.1.1 Cellulose nanocrystals -- 3.1.2 Processing of CNCs/PNCs -- 3.1.3 Preparation of cellulose nanocrystals -- 3.1.3.1 Starch nanocrystals -- 3.1.3.2 Isolation of chitin nanocrystals -- 3.1.3.3 Use of ionic liquid -- 3.1.3.4 Preparation of some biologically active polysaccharide from plant source -- 3.2 Characterization -- 3.3 Fourier transform infrared spectroscopy -- 3.4 SEM/TEM -- 3.4.1 Thermal analysis -- 3.5 X-ray diffraction -- 3.6 Anticancerous activities -- 3.7 Conclusion -- References -- 4 The composition of polysaccharides: monosaccharides and binding, group decorating, polysaccharides chains -- 4.1 Introduction -- 4.2 Carbohydrates and its classification -- 4.2.1 Monosaccharides -- 4.2.1.1 Classification of monosaccharide -- 4.2.1.1.1 Classification based on number of carbon atoms -- 4.2.1.1.2 Classification based on different types of carbonyl group -- 4.2.1.2 Properties -- 4.2.1.2.1 Physical properties -- 4.2.1.2.2 Chemical properties -- 4.2.1.3 Examples of monosaccharide (glucose) -- 4.2.1.3.1 Types of glucose -- 4.2.1.3.2 Occurrence -- 4.2.1.3.3 Properties -- 4.2.1.3.4 Structure of glucose -- 4.2.2 Oligosaccharide -- 4.2.2.1 Types of oligosaccharide -- 4.2.2.1.1 Disaccharide -- 4.2.2.1.2 Trisaccharide -- 4.2.3 Polysaccharide -- 4.2.3.1 Classification of polysaccharides -- 4.2.3.1.1 Homopolysaccahride -- 4.2.3.1.2 Heteropolysaccharide -- 4.2.3.2 Properties.
|
505 |
8 |
|
|a 4.2.3.2.1 Physical properties -- 4.2.3.2.2 Chemical properties -- 4.3 Composition and linkages in polysaccharides -- 4.3.1 Starch -- 4.3.2 Cellulose -- 4.3.3 Chitin -- 4.3.4 Cellulose nanocrystals and chitin nanocrystals -- 4.4 Decorating groups in polysaccharides -- 4.5 Polysaccharides chains -- 4.6 Binding group and linkages of polysaccharide -- 4.7 Summary -- References -- 5 Understanding how the substituents of polysaccharides influence physical properties -- 5.1 Introduction -- 5.2 Characteristics and classification of polysaccharides -- 5.3 Influence of polysaccharide substituents on physical properties -- 5.3.1 Solubility -- 5.3.2 Stiffness and crystallinity -- 5.3.3 Hygroscopicity -- 5.3.4 Stability -- 5.3.5 Thermal properties -- 5.3.6 Intrinsic viscosity -- 5.4 Impact of substituents of functionalized polysaccharide derivatives -- 5.5 Understanding the pattern of linkage and conformation of carbohydrates -- 5.6 Polysaccharides in medical applications -- 5.6.1 Polysaccharides in drug delivery -- 5.6.2 Nanoparticle drug delivery nanoparticles -- 5.6.3 Polysaccharides as functional foods and nutriceuticals -- 5.7 Conclusions and future perspectives -- Acknowledgments -- Declaration of competing interest -- References -- 6 Surface modification of polysaccharide nanocrystals -- 6.1 Introduction -- 6.2 Surface alchemy of polysaccharide nanocrystals -- 6.3 Objective and strategies of surface modification -- 6.4 Diverse methods of surface modification of polysaccharide nanocrystals -- 6.4.1 Strategy of physical modifications -- 6.4.1.1 Adsorption of surfactants -- 6.4.1.1.1 Cationic surfactants -- 6.4.1.1.2 Anionic surfactants -- 6.4.1.1.3 Nonionic surfactants -- 6.4.1.2 Adsorption of macromolecules -- 6.4.1.2.1 Cationic and anionic polyelectrolytes -- 6.4.1.2.2 Amphoteric polymers -- 6.4.1.2.3 Block copolymers -- 6.4.1.2.4 Adsorption of enzymes.
|
505 |
8 |
|
|a 6.4.2 Strategy for chemical modifications -- 6.4.2.1 Acetylation and esterification -- 6.4.2.2 Silylation -- 6.4.2.3 Tempo-mediated oxidation -- 6.4.2.4 Isocyanate carboamination -- 6.4.2.5 Cationization of polysaccharide nanocrystals -- 6.4.2.6 Self-cross-linking of polysaccharide nanocrystals -- 6.4.3 Polymer-grafting techniques -- 6.4.3.1 Grafting onto approach -- 6.4.3.1.1 Isocyanate-mediated reaction -- 6.4.3.1.2 Click chemistry -- 6.4.3.2 Grafting from approach -- 6.4.3.2.1 Ring-opening polymerization -- 6.4.3.2.2 Living radical polymerization -- 6.5 Conclusions and future perspectives -- Acknowledgment -- Declaration of competing interest -- References -- 7 Nanostructured polysaccharide-based materials obtained from renewable resources and uses -- 7.1 Introduction -- 7.2 Types of polysaccharide-based nanocomposites -- 7.3 Polysaccharides in packaging -- 7.3.1 Edible films and coatings -- 7.3.2 Active packaging -- 7.3.3 Carriers of antioxidant and antimicrobial compounds -- 7.3.4 Carrier of probiotics -- 7.3.5 Flavor encapsulation -- 7.4 Water treatment -- 7.4.1 Organic pollutants -- 7.4.2 Heavy metals and inorganic ions -- 7.5 Energy applications -- 7.5.1 Polysaccharide-based nanocomposites in solar cells -- 7.5.2 Polysaccharide-based nanocomposites for lithium ion batteries -- 7.5.3 Nanocellulose-based nanocomposites for supercapacitors -- 7.5.4 Polysaccharide-based hybrid membranes for CO2 separation -- 7.6 Future prospects -- References -- 8 Nanopolysaccharides and pharmaceutical applications -- List of abbreviation -- 8.1 Introduction -- 8.2 Pharmaceutical applications of nanopolysaccharides -- 8.2.1 Drug-delivery system -- 8.2.2 Molecular imaging tool -- 8.2.3 Disease treatment and therapy -- 8.2.4 Biosensing -- 8.3 Fabrication of nanopolysaccharide used for pharmaceutical applications -- 8.3.1 Nano gelation/suspension/emulsion.
|
505 |
8 |
|
|a 8.3.2 Self-assembled nanoparticles -- 8.3.3 Grafting -- 8.3.4 Cross-linking -- 8.3.5 Metal-based polysaccharide nanoforms -- 8.3.6 Nanoprecipitation method -- 8.4 Conclusions and future prospects -- References -- 9 Nanocellulose: a sustainable nanomaterial for controlled drug delivery applications -- 9.1 Introduction -- 9.1.1 Evolution of controlled drug delivery -- 9.1.2 Significance of controlled drug delivery -- 9.1.3 Hydrogels for controlled drug delivery -- 9.1.4 Biobased hydrogel materials -- 9.2 Nanocellulose-based hydrogels -- 9.2.1 Nanocellulose -- 9.2.1.1 Bacterial nanocellulose -- 9.2.1.2 Cellulose nanocrystals -- 9.2.1.3 Cellulose nanofibers -- 9.2.2 Benefits of cellulose-based nanohydrogels -- 9.2.2.1 Abundance and renewability -- 9.2.2.2 High hydrophilicity and swelling capacity -- 9.2.2.3 High surface area -- 9.2.2.4 High surface functionality -- 9.2.2.5 Mechanical stability -- 9.2.2.6 Sustainability and facile preparation -- 9.2.2.7 Biocompatibility -- 9.2.3 Challenges for cellulose-based nanohydrogels -- 9.2.3.1 Spatial and temporal control of drug release -- 9.2.3.2 Drug conjugation -- 9.2.3.3 Nanocellulose characterization -- 9.2.3.4 Cost -- 9.3 Nanocellulose hydrogel-drug delivery systems -- 9.3.1 Nanocellulose hydrogel forms -- 9.3.2 Mechanisms of drug loading -- 9.3.3 Mechanisms of drug release -- 9.3.4 Scope of book chapter -- 9.4 Cellulose nanocrystal hydrogels for controlled drug delivery -- 9.4.1 Overview of cellulose nanocrystal hydrogels -- 9.4.2 Cellulose nanocrystal cross-linked nanocomposite hydrogels -- 9.4.3 Physically cross-linked cellulose nanocrystal hydrogels -- 9.4.4 Chemically cross-linked cellulose nanocrystal hydrogels -- 9.4.5 List of cellulose nanocrystal hydrogels -- 9.5 Cellulose nanofiber-based hydrogels for controlled drug delivery -- 9.5.1 Overview of cellulose nanofiber hydrogels.
|
650 |
|
0 |
|a Polysaccharides
|x Biotechnology.
|
650 |
|
0 |
|a Polysaccharides
|x Industrial applications.
|
650 |
|
0 |
|a Nanostructured materials
|x Industrial applications.
|
650 |
|
6 |
|a Polysaccharides
|0 (CaQQLa)201-0011180
|x Biotechnologie.
|0 (CaQQLa)201-0378829
|
650 |
|
6 |
|a Polysaccharides
|0 (CaQQLa)201-0011180
|x Applications industrielles.
|0 (CaQQLa)201-0374039
|
650 |
|
6 |
|a Nanomat�eriaux
|0 (CaQQLa)201-0258061
|x Applications industrielles.
|0 (CaQQLa)201-0374039
|
650 |
|
7 |
|a Polysaccharides
|x Biotechnology
|2 fast
|0 (OCoLC)fst01070797
|
650 |
|
7 |
|a Polysaccharides
|x Industrial applications
|2 fast
|0 (OCoLC)fst01070798
|
700 |
1 |
|
|a Singh, Preeti
|c (Materials scientist),
|e editor.
|
700 |
1 |
|
|a Manzoor, Kaiser,
|e editor.
|
700 |
1 |
|
|a Ikram, Saiqa,
|e editor.
|
700 |
1 |
|
|a Annamalai, Pratheep Kumar,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Innovation in nano-polysaccharides for eco-sustainability.
|d [Place of publication not identified] : Elsevier, 2021
|z 0128234393
|w (OCoLC)1237861401
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128234396
|z Texto completo
|