Cargando…

Energy methods and finite element techniques : stress and vibration applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Jweeg, Muhsin J., Al-Waily, Muhannad (Autor), Resan, Kadhim Kamil (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, [2022]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Energy Methods and Finite Element Techniques
  • Copyright Page
  • Contents
  • About the authors
  • Preface
  • I. Energy Method
  • 1 Fundamentals of energy methods
  • 1.1 Principles of virtual work (P.V.W.)
  • 1.2 Work function and potential energy
  • 1.3 Total potential energy
  • 1.4 Application of P.V.W. to generate differential equations for axial member
  • 1.5 Principles of stationary total potential energy (P.S.T.P.E.) and trigonometric series for beam bending
  • 1.6 Principle of virtual complementary energy (P.V.C.E.)
  • 1.6.1 Castiglianon's theorem of deflections
  • 1.7 Torsion of a rectangular section bar
  • Problems
  • Bibliography
  • 2 Direct methods
  • 2.1 Galerkin method (G.M.)
  • 2.1.1 Boundary value problems
  • 2.1.2 Assessment of accuracy
  • 2.2 Rayleigh ritz method (R.R.M.)
  • 2.3 Examples using the P.S.T.P.E. with non-trigonometric coordinate functions
  • 2.4 Case studies for bar and beam problems under different loading and support conditions
  • 2.4.1 Bar problem by Galerkin's method using polynomial assumption
  • 2.4.2 Beam under uniformly distributed load by using a higher order polynomial deflected shape
  • 2.4.3 Cantilever beam under uniformly varying load
  • 2.4.4 A cantilever beam under a concentrated load at the free end
  • 2.4.5 Torsion of rectangular section using G.M
  • 2.4.6 Application of energy methods to Lambda frame
  • Problems
  • 3 Application of energy methods to plate problems
  • 3.1 Plate bending
  • 3.2 Plate stretching
  • 3.3 Buckling of thin plates using energy method
  • 3.3.1 Inelastic buckling
  • 3.3.2 Pure shear
  • 3.4 Application of Galerkin's method G.M. to plate bending
  • 3.5 Kantorovich method
  • 3.6 Application of Kantorovich's method to plate bending
  • Problems
  • Bibliography
  • 4 Energy methods in vibrations
  • 4.1 Rayleigh's method
  • 4.2 Rayleigh's energy theorem (R. Principle).
  • 4.3 Rayleigh Ritz method (modified Ritz method)
  • 4.4 Plate applications
  • 4.4.1 Rayleigh's method
  • 4.4.2 Ritz method
  • 4.4.3 Galerkin-Vlasov method
  • 4.5 Application to the governing differential equation of plates
  • 4.5.1 Rayleigh-Ritz
  • 4.5.2 Galerkin's method
  • Problems
  • Bibliography
  • II. Finite Element Method
  • 5 Introduction to finite element method: bar and beam applications
  • 5.1 Bar extension
  • 5.2 Equivalent nodal forces of the axially distributed loading
  • 5.3 Temperature effects-application to axially loaded problems
  • 5.4 Application to the beam bending
  • 5.5 Inclined bar element
  • Problems
  • Bibliography
  • 6 Two-dimensional problems: application of plane strain and stress
  • 6.1 Two-dimensional modeling: triangular elements
  • 6.1.1 Constant strain triangle element
  • 6.1.2 Loading conditions
  • 6.2 Derivation of the 4-node quadrilateral element, formulation of the element equations
  • 6.3 Parallelogramic element
  • Problems
  • Bibliography
  • 7 Torsion problem
  • 7.1 Total potential energy
  • 7.2 Iso-parametric formulation of torsion problem: triangular element
  • Problems
  • Bibliography
  • 8 Axisymmetric elasticity problems
  • 8.1 Geometrical description
  • 8.2 Three nodes triangular element
  • 8.3 Representation of the applied forces as an equivalent nodal forces
  • 8.3.1 Body force
  • 8.3.2 Rotating bodies
  • 8.3.3 Surface traction
  • Problems
  • Bibliography
  • 9 Application of finite element method to three-dimensional elasticity problems
  • 9.1 Three-dimensional elasticity relations
  • 9.2 8-Node hexahedral element
  • 9.3 Steps of formulation
  • 9.4 Example of parallelopiped element
  • 9.5 Tetrahedron element
  • 9.5.1 Element description and element stiffness [k]e determination
  • 9.5.2 Equivalent nodal forces
  • 9.5.3 System stiffness and load vector
  • Problems
  • Bibliography.
  • 10 Application of finite element to the vibration problems
  • 10.1 General
  • 10.2 Application to axial vibration of a bar
  • 10.3 Equation of motion
  • 10.3.1 Mode shapes determination
  • 10.3.2 Orthogonality of mode of vibration
  • 10.4 Application to transverse vibration of beams
  • 10.5 Constant strain element
  • 10.6 Quadrilateral elements
  • 10.7 Axisymmetric triangular element
  • 10.8 Consistent element mass matrix for the 8-nodes solid element
  • 10.9 Consistent mass matrix for a tetrahedron element
  • Problems
  • Bibliography
  • 11 Steady state heat conduction
  • 11.1 Steady-state heat flows
  • 11.2 Boundary conditions
  • 11.3 Derivation of equilibrium equations
  • 11.4 Application of three nodes constant strain triangular element
  • 11.4.1 Determination of heat conduction matrices [k]cond
  • 11.4.2 Determination of boundary convection matrix
  • 11.4.3 Determination of boundary convection vector Qcv
  • 11.4.4 Determination of applied heat vector Qb
  • 11.4.4.1 Heat conduction matrices determination
  • 11.4.4.2 Convection matrix determination
  • 11.4.4.3 Determination of heat flow
  • 11.5 4-Node quadrilateral element
  • Problems
  • Bibliography
  • 12 Shape function determinations and numerical integration
  • 12.1 One-dimensional formulations
  • 12.1.1 Polynomial assumption
  • 12.1.2 Lagrange interpolation
  • 12.2 Two-dimensional applications
  • 12.2.1 Triangular element
  • 12.2.2 Shape functions in terms of area coordinates
  • 12.2.3 Interpolation formula-quadrilateral elements
  • 12.2.4 9-Node Lagrangian element
  • 12.2.5 12-Node serendipity element
  • 12.2.6 8-Node serendipity element
  • 12.2.7 Superposition theory
  • 12.3 Convergence criteria
  • 12.4 Three dimensions of pentahedral element
  • 12.4.1 Intrinsic 6-node element
  • 12.4.2 Natural coordinates
  • 12.4.3 Higher-order element: the 15-node serendipity element.
  • 12.4.4 18-Node Lagrangian element
  • 12.4.5 Serendipity elements
  • 12.4.6 Tetrahedral elements
  • 12.4.6.1 4-Node tetrahedral element
  • 12.4.6.2 Higher-order elements in terms of volume coordinates
  • 12.5 Numerical integration
  • 12.5.1 Gaussian quadrature formula
  • 12.5.2 Newton's _Cotes quadrature rule
  • 12.5.3 Gauss-Legendre quadrature
  • 12.5.4 Arithmetic evaluation
  • 12.5.5 Numerical integration in 2D
  • 12.5.6 Integration in triangular numerical
  • 12.5.7 Numerical integration in 3D elements
  • Problems
  • Bibliography
  • 13 Higher-order isoparametric formulation
  • 13.1 Isoparametric element-thin plate bending element
  • 13.1.1 8-Node isoparametric element
  • 13.1.2 Strain-displacement relationship [B]
  • 13.1.2.1 Element stiffness matrix
  • 13.1.2.2 Element mass matrix
  • 13.1.2.3 Equivalent nodal forces
  • 13.1.3 Assembly of system equations
  • 13.1.4 Strain and stress calculations
  • 13.2 General shell element
  • 13.3 Axisymmetric solid under axisymmetric loading
  • 13.4 Laminated composite plates
  • 13.4.1 Stress-strain relations for anisotropic material
  • 13.4.2 Stress-strain relations for plate bending in an orthotropic
  • 13.4.3 Strain and stress variations in a lamina
  • 13.4.4 Resultant laminate forces and moments
  • 13.4.5 Symmetric laminate
  • 13.4.6 Antisymmetric laminates
  • 13.4.6.1 Antisymmetric cross-ply laminates
  • 13.4.6.2 Antisymmetric angle-ply laminates
  • 13.4.7 Higher shear deformation theory
  • 13.4.8 F.E. modeling using the 9-node Lagrangian quadrilateral isoparametric element
  • 13.4.8.1 Formulation
  • 13.4.8.2 Element stiffness matrix [k]e
  • 13.4.8.3 Element mass matrix [m]e
  • Problems
  • Bibliography
  • 14 Finite element program structures
  • 14.1 Introduction
  • 14.2 Structure of the F.E. process, static analysis
  • 14.3 Flow chart of the subroutine input's DATA.
  • 14.4 Flow chart of the subroutine shape functions and their derivatives
  • 14.5 Flow chart of the Jacobian matrix subroutine
  • 14.6 Flow chart of the subroutine [BM] matrix
  • 14.7 Flow chart of subroutine [DM]
  • 14.8 Flow chart of subroutine [DM]�[BM]
  • 14.9 Flow chart of the element stiffness matrix subroutine [K] of size (NDFE, NDFE)
  • 14.10 Flow chart of the assembly subroutine of the global stiffness matrix [KG]
  • 14.11 Global load vector [FG]
  • 14.11.1 Flow chart of the subroutine parabolic
  • 14.11.2 Flow chart of uniform pressure subroutine
  • 14.11.3 Flow chart of the body force subroutine
  • 14.11.4 Flow chart of the concentrated loading subroutine
  • 14.11.5 Flow chart of the thermal loading
  • 14.12 Application of BCs flow chart
  • 14.13 Flow chart solution subroutine
  • 14.14 Calculation of stresses
  • 14.15 Element mass matrix
  • 14.16 Free vibration
  • Bibliography
  • Appendix A: Review of typical framed structure 2-node elements
  • A.1 Continuous beam element
  • A.2 Plane truss element
  • A.3 Plane frame element
  • A.4 Grid element
  • A.5 Space truss element
  • A.6 Space frame element
  • A.7 Rotating shaft element
  • A.8 Torque rod element
  • Appendix B: Penalty function
  • Summary: Elimination Approach
  • Appendix C: Analytical solution of equations of motion
  • C.1 Uncoupled equations of motion of undamped problems
  • Appendix D: Numerical integration in time-dependent problems
  • Index
  • Back Cover.