Sustainable materials and green processing for energy conversion /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
[2022]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Sustainable Materials and Green Processing for Energy Conversion
- Copyright
- Contents
- Contributors
- Preface
- Chapter 1: Introduction to green processing for sustainable materials
- 1. Introduction
- 2. What are sustainable materials?
- 3. Types of sustainable materials
- 3.1. Inorganic nanomaterials
- 3.2. Metal-free nanomaterials
- 3.3. Hybrid nanomaterials
- 4. Techniques for sustainable materials syntheses
- 4.1. Conventional methods
- 4.1.1. Deposition techniques: Physical vapor deposition and chemical vapor deposition
- 4.1.2. Electrophoretic deposition
- 4.1.3. Spray pyrolysis
- 4.1.4. Anodization method
- 4.1.5. Hydrothermal/solvothermal method
- 4.1.6. Sol-gel method
- 4.1.7. Template method
- 4.2. ``Greener�� techniques in sustainable materials processing
- 4.2.1. Microwave technique
- 4.2.2. Sonochemical technique
- 4.2.3. Mechanochemical technique
- 5. Greener processing of carbon nanomaterials: Waste to nano carbons
- 6. Green processing using natural resources
- 6.1. Plant/plant waste extract
- 6.2. Bacteria
- 6.3. Other biological derivatives
- 6.4. Biotemplates in green processing of sustainable materials
- 7. Conclusion
- References
- Chapter 2: Advanced functional materials and devices for energy conversion and storage applications
- 1. Introduction
- 2. Piezoelectric-based ambient mechanical energy-harvesting/conversion systems (PENGs)
- 2.1. Conventional working mechanism of PENGs for harvesting ambient mechanical energies
- 2.2. Functional materials extensively employed in PENGs
- 2.2.1. Inorganic-based piezoelectric materials
- 2.2.2. Organic-based piezoelectric materials
- 2.2.2.1. Nonbiobased piezoelectric materials
- 2.2.2.2. Biobased piezoelectric materials
- 2.2.3. Hybrid/composite-based piezoelectric materials.
- 3. Triboelectric-based ambient mechanical energy-harvesting/conversion systems (TENGs)
- 3.1. Various working modes of TENGs
- 3.2. Typical working mechanisms of TENGs for harvesting ambient mechanical energies
- 3.3. Functional materials extensively employed in TENGs
- 4. Hybrid nanogenerators (HNGs)
- 5. Supercapacitor-based electrochemical energy storage systems
- 5.1. Different types of supercapacitor cell and their fundamental structural designs/architectures
- 5.2. Typical charge storage mechanisms
- 5.3. Functional micro/nanostructured electrode materials frequently employed in supercapacitors
- 5.4. Various functional electrolytes commonly employed in supercapacitors
- 5.5. Electrodes fabrication techniques
- 5.6. Supercapacitor electrodes and device/cell characterization techniques
- 6. Battery-based electrochemical energy storage systems
- 7. Conclusions and future perspective
- Acknowledgments
- Conflict of interest
- References
- Chapter 3: Recent development in sustainable technologies for clean hydrogen evolution: Current scenario and future persp ...
- 1. Introduction
- 1.1. Hydrogen production method
- 1.2. The general method of hydrogen production
- 1.3. Hydrogen potential for the energy generation process
- 2. Conventional process of hydrogen production
- 2.1. Fossil fuels
- 2.1.1. H2 generation from hydrocarbon (CnHmOp) reforming
- Steam reforming method
- Partial oxidation reforming
- Auto-thermal reforming
- 2.1.2. Hydrocarbon pyrolysis
- 2.2. Renewable sources for hydrogen production
- 2.2.1. Hydrogen production from biomass
- 2.2.2. Geothermal to hydrogen energy
- 2.2.3. Hydrothermal and marine into hydrogen energy
- 2.2.4. Solar and wind into hydrogen energy
- 2.3. Hydrogen production from water splitting
- 2.3.1. Water electrolysis
- 2.3.2. Thermolysis of water.
- 2.4. H2 production methods from solar light
- 2.4.1. Photoelectrolysis
- 2.4.2. Thermochemical water splitting
- 2.4.3. Photocatalytic water splitting
- 2.4.4. Photochemical reaction
- 3. Membrane-based technology for hydrogen separation
- 3.1. Proton-exchange membrane in water electrolysis
- 3.2. Anion-exchange membrane electrolysis
- 4. Artificial photosynthesis for hydrogen production
- 5. Semiconductor-based photocatalytic water splitting
- 5.1. Bandgap engineering
- 5.2. Interface engineering
- 6. Conclusion
- References
- Chapter 4: Earth-abundant electrocatalysts for sustainable energy conversion
- 1. Introduction
- 2. Fundamentals and principles of electrocatalysis
- 2.1. Mechanism of oxygen and hydrogen evolution reactions
- 2.2. Mechanism of CO2 electroreduction
- 3. Types of Earth-abundant electrocatalysts
- 3.1. Metallic catalysts
- 3.1.1. Transition metals, metal oxides, and hydroxides
- 3.1.2. Transition metal dichalcogenides
- 3.1.3. Other metal-based materials
- 3.2. Metal-free nanomaterials
- 3.2.1. Graphene
- 3.2.2. Graphitic carbon nitride
- 4. Catalyst preparations and strategies in enhancing electrocatalytic performance
- 4.1. Common methods of catalyst preparation
- 4.1.1. Hydrothermal synthesis, impregnation, and coprecipitation
- 4.1.2. Electrochemical methods
- 4.1.3. Others
- 4.2. Catalysts design strategies
- 4.2.1. Nanostructuring
- 4.2.2. Tuning catalyst composition and electronic structures
- 4.2.3. Interfacial engineering
- 4.2.4. Computer-assisted catalyst design
- 5. Durability challenges of electrocatalysts
- 5.1. Durability testing and characterization
- 5.2. Catalyst degradation and the mitigation strategies
- 6. Sustainability of electrocatalytic technologies
- 6.1. Life-cycle analysis
- 6.2. End-of-life technologies
- 7. Outlook
- References.
- Chapter 5: Green processes and sustainable materials for renewable energy production via water splitting
- 1. Introduction
- 2. Water-splitting processes
- 2.1. Biological water splitting
- 2.2. Thermochemical water splitting
- 2.3. Solar water splitting: A ``greener�� approach
- 2.3.1. Electrolysis
- 2.3.2. Photoelectrocatalytic and photocatalytic water splitting
- 2.3.3. Photocatalytic seawater splitting
- 3. Sustained water splitting using waste
- 4. Semiconducting materials for solar water splitting
- 4.1. Pure metal oxides/hybrid metal oxide
- 4.2. Metal chalcogenides
- 4.3. Metal-organic frameworks
- 4.4. Metal-free semiconductor nanomaterials
- 4.5. Green processing of semiconducting materials
- 5. Conclusions
- References
- Chapter 6: Graphitic carbon nitride-based photocatalysts for hydrogen production
- 1. Introduction
- 2. The fundamental framework for understanding photocatalysis for water splitting
- 3. Designing of heterojunctions based on g-C3N4 photocatalyst for hydrogen production
- 3.1. Type I heterojunction system based on the g-C3N4 photocatalyst
- 3.2. Type II heterojunction system based on the g-C3N4 photocatalyst
- 3.3. Z-scheme heterojunction system based on the g-C3N4 photocatalyst
- 3.4. Isotype heterojunction system based on the g-C3N4 photocatalyst
- 4. Conclusion
- Acknowledgments
- References
- Chapter 7: Catalytic reduction of 4-nitrophenol to 4-aminphenol in water using metal nanoparticles
- 1. Introduction
- 2. Reduction of nitroaromatic compounds using metal nanoparticles
- 3. Conclusion
- Acknowledgments
- References
- Chapter 8: Catalytic and noncatalytic growth of ZnO nanostructures on different substrates, and Sb-doped ZnO nanostruct
- 1. Introduction
- 2. Experimental methods
- 2.1. Synthesis of doped and undoped ZnO nanostructures
- 2.2. Material characterization.
- 3. Results and discussion
- 3.1. Morphology, composition, and structural properties
- 3.2. Room-temperature photoluminescence
- 4. Conclusions
- Acknowledgments
- References
- Chapter 9: Flexible single-source precursors for solar light-harvesting applications
- 1. Introduction
- 2. Single-source precursors
- 2.1. Advantages of single-source precursors
- 2.2. Features of single-source precursors
- 2.3. Diversity in single-source precursors for semiconductors
- 2.3.1. Chalcogenolato complexes
- 2.3.2. Dithio-/diselenophosphinato complexes
- 2.3.3. Bis(dialkydithio/selenocarbamato) metal compounds
- 2.3.4. N-alkyldithiocarbamato complexes
- 2.3.5. Mixed alkyl/dithio- or diselenocarbamato complexes
- 2.3.6. Xanthate complexes
- 2.3.7. Monothiocarbamato complexes
- 2.3.8. Dichalcogenoimidodiphosphinato complexes
- 2.3.9. Dimorpholinodithioacetylacetonato complexes
- 2.3.10. Thiobiurets and dithiobiurets
- 2.3.11. Thiosemicarbazide complexes
- 2.3.12. Diorganophosphides complexes
- 2.3.13. Complexes as single-source precursors for the formation of oxide-based nanomaterials
- 2.4. Morphological controls via single-source precursors
- 2.5. Light-harvesting applications of semiconductors
- 2.5.1. Solar cell applications
- 3. Conclusion
- References
- Chapter 10: Metal dithiocarbamates as useful precursors to metal sulfides for application in quantum dot-sensitized sola
- 1. Introduction
- 2. Sunlight as energy source
- 3. Generations in PV solar cells
- 3.1. First-generation solar cells
- 3.2. Second-generation solar cells
- 3.3. Third-generation solar cells
- 4. Performance parameters of solar cells
- 5. Semiconductor nanoparticles as light-absorbing materials for solar cells
- 5.1. Synthesis of nanoparticles
- 5.2. Binary nanoparticles
- 5.2.1. Antimony sulfide
- 5.2.2. Bismuth sulfide
- 5.2.3. Copper sulfide.