Cargando…

Sustainable materials and green processing for energy conversion /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Cheong, Kuan Yew (Editor ), Apblett, Allen (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, [2022]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Sustainable Materials and Green Processing for Energy Conversion
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter 1: Introduction to green processing for sustainable materials
  • 1. Introduction
  • 2. What are sustainable materials?
  • 3. Types of sustainable materials
  • 3.1. Inorganic nanomaterials
  • 3.2. Metal-free nanomaterials
  • 3.3. Hybrid nanomaterials
  • 4. Techniques for sustainable materials syntheses
  • 4.1. Conventional methods
  • 4.1.1. Deposition techniques: Physical vapor deposition and chemical vapor deposition
  • 4.1.2. Electrophoretic deposition
  • 4.1.3. Spray pyrolysis
  • 4.1.4. Anodization method
  • 4.1.5. Hydrothermal/solvothermal method
  • 4.1.6. Sol-gel method
  • 4.1.7. Template method
  • 4.2. ``Greener�� techniques in sustainable materials processing
  • 4.2.1. Microwave technique
  • 4.2.2. Sonochemical technique
  • 4.2.3. Mechanochemical technique
  • 5. Greener processing of carbon nanomaterials: Waste to nano carbons
  • 6. Green processing using natural resources
  • 6.1. Plant/plant waste extract
  • 6.2. Bacteria
  • 6.3. Other biological derivatives
  • 6.4. Biotemplates in green processing of sustainable materials
  • 7. Conclusion
  • References
  • Chapter 2: Advanced functional materials and devices for energy conversion and storage applications
  • 1. Introduction
  • 2. Piezoelectric-based ambient mechanical energy-harvesting/conversion systems (PENGs)
  • 2.1. Conventional working mechanism of PENGs for harvesting ambient mechanical energies
  • 2.2. Functional materials extensively employed in PENGs
  • 2.2.1. Inorganic-based piezoelectric materials
  • 2.2.2. Organic-based piezoelectric materials
  • 2.2.2.1. Nonbiobased piezoelectric materials
  • 2.2.2.2. Biobased piezoelectric materials
  • 2.2.3. Hybrid/composite-based piezoelectric materials.
  • 3. Triboelectric-based ambient mechanical energy-harvesting/conversion systems (TENGs)
  • 3.1. Various working modes of TENGs
  • 3.2. Typical working mechanisms of TENGs for harvesting ambient mechanical energies
  • 3.3. Functional materials extensively employed in TENGs
  • 4. Hybrid nanogenerators (HNGs)
  • 5. Supercapacitor-based electrochemical energy storage systems
  • 5.1. Different types of supercapacitor cell and their fundamental structural designs/architectures
  • 5.2. Typical charge storage mechanisms
  • 5.3. Functional micro/nanostructured electrode materials frequently employed in supercapacitors
  • 5.4. Various functional electrolytes commonly employed in supercapacitors
  • 5.5. Electrodes fabrication techniques
  • 5.6. Supercapacitor electrodes and device/cell characterization techniques
  • 6. Battery-based electrochemical energy storage systems
  • 7. Conclusions and future perspective
  • Acknowledgments
  • Conflict of interest
  • References
  • Chapter 3: Recent development in sustainable technologies for clean hydrogen evolution: Current scenario and future persp ...
  • 1. Introduction
  • 1.1. Hydrogen production method
  • 1.2. The general method of hydrogen production
  • 1.3. Hydrogen potential for the energy generation process
  • 2. Conventional process of hydrogen production
  • 2.1. Fossil fuels
  • 2.1.1. H2 generation from hydrocarbon (CnHmOp) reforming
  • Steam reforming method
  • Partial oxidation reforming
  • Auto-thermal reforming
  • 2.1.2. Hydrocarbon pyrolysis
  • 2.2. Renewable sources for hydrogen production
  • 2.2.1. Hydrogen production from biomass
  • 2.2.2. Geothermal to hydrogen energy
  • 2.2.3. Hydrothermal and marine into hydrogen energy
  • 2.2.4. Solar and wind into hydrogen energy
  • 2.3. Hydrogen production from water splitting
  • 2.3.1. Water electrolysis
  • 2.3.2. Thermolysis of water.
  • 2.4. H2 production methods from solar light
  • 2.4.1. Photoelectrolysis
  • 2.4.2. Thermochemical water splitting
  • 2.4.3. Photocatalytic water splitting
  • 2.4.4. Photochemical reaction
  • 3. Membrane-based technology for hydrogen separation
  • 3.1. Proton-exchange membrane in water electrolysis
  • 3.2. Anion-exchange membrane electrolysis
  • 4. Artificial photosynthesis for hydrogen production
  • 5. Semiconductor-based photocatalytic water splitting
  • 5.1. Bandgap engineering
  • 5.2. Interface engineering
  • 6. Conclusion
  • References
  • Chapter 4: Earth-abundant electrocatalysts for sustainable energy conversion
  • 1. Introduction
  • 2. Fundamentals and principles of electrocatalysis
  • 2.1. Mechanism of oxygen and hydrogen evolution reactions
  • 2.2. Mechanism of CO2 electroreduction
  • 3. Types of Earth-abundant electrocatalysts
  • 3.1. Metallic catalysts
  • 3.1.1. Transition metals, metal oxides, and hydroxides
  • 3.1.2. Transition metal dichalcogenides
  • 3.1.3. Other metal-based materials
  • 3.2. Metal-free nanomaterials
  • 3.2.1. Graphene
  • 3.2.2. Graphitic carbon nitride
  • 4. Catalyst preparations and strategies in enhancing electrocatalytic performance
  • 4.1. Common methods of catalyst preparation
  • 4.1.1. Hydrothermal synthesis, impregnation, and coprecipitation
  • 4.1.2. Electrochemical methods
  • 4.1.3. Others
  • 4.2. Catalysts design strategies
  • 4.2.1. Nanostructuring
  • 4.2.2. Tuning catalyst composition and electronic structures
  • 4.2.3. Interfacial engineering
  • 4.2.4. Computer-assisted catalyst design
  • 5. Durability challenges of electrocatalysts
  • 5.1. Durability testing and characterization
  • 5.2. Catalyst degradation and the mitigation strategies
  • 6. Sustainability of electrocatalytic technologies
  • 6.1. Life-cycle analysis
  • 6.2. End-of-life technologies
  • 7. Outlook
  • References.
  • Chapter 5: Green processes and sustainable materials for renewable energy production via water splitting
  • 1. Introduction
  • 2. Water-splitting processes
  • 2.1. Biological water splitting
  • 2.2. Thermochemical water splitting
  • 2.3. Solar water splitting: A ``greener�� approach
  • 2.3.1. Electrolysis
  • 2.3.2. Photoelectrocatalytic and photocatalytic water splitting
  • 2.3.3. Photocatalytic seawater splitting
  • 3. Sustained water splitting using waste
  • 4. Semiconducting materials for solar water splitting
  • 4.1. Pure metal oxides/hybrid metal oxide
  • 4.2. Metal chalcogenides
  • 4.3. Metal-organic frameworks
  • 4.4. Metal-free semiconductor nanomaterials
  • 4.5. Green processing of semiconducting materials
  • 5. Conclusions
  • References
  • Chapter 6: Graphitic carbon nitride-based photocatalysts for hydrogen production
  • 1. Introduction
  • 2. The fundamental framework for understanding photocatalysis for water splitting
  • 3. Designing of heterojunctions based on g-C3N4 photocatalyst for hydrogen production
  • 3.1. Type I heterojunction system based on the g-C3N4 photocatalyst
  • 3.2. Type II heterojunction system based on the g-C3N4 photocatalyst
  • 3.3. Z-scheme heterojunction system based on the g-C3N4 photocatalyst
  • 3.4. Isotype heterojunction system based on the g-C3N4 photocatalyst
  • 4. Conclusion
  • Acknowledgments
  • References
  • Chapter 7: Catalytic reduction of 4-nitrophenol to 4-aminphenol in water using metal nanoparticles
  • 1. Introduction
  • 2. Reduction of nitroaromatic compounds using metal nanoparticles
  • 3. Conclusion
  • Acknowledgments
  • References
  • Chapter 8: Catalytic and noncatalytic growth of ZnO nanostructures on different substrates, and Sb-doped ZnO nanostruct
  • 1. Introduction
  • 2. Experimental methods
  • 2.1. Synthesis of doped and undoped ZnO nanostructures
  • 2.2. Material characterization.
  • 3. Results and discussion
  • 3.1. Morphology, composition, and structural properties
  • 3.2. Room-temperature photoluminescence
  • 4. Conclusions
  • Acknowledgments
  • References
  • Chapter 9: Flexible single-source precursors for solar light-harvesting applications
  • 1. Introduction
  • 2. Single-source precursors
  • 2.1. Advantages of single-source precursors
  • 2.2. Features of single-source precursors
  • 2.3. Diversity in single-source precursors for semiconductors
  • 2.3.1. Chalcogenolato complexes
  • 2.3.2. Dithio-/diselenophosphinato complexes
  • 2.3.3. Bis(dialkydithio/selenocarbamato) metal compounds
  • 2.3.4. N-alkyldithiocarbamato complexes
  • 2.3.5. Mixed alkyl/dithio- or diselenocarbamato complexes
  • 2.3.6. Xanthate complexes
  • 2.3.7. Monothiocarbamato complexes
  • 2.3.8. Dichalcogenoimidodiphosphinato complexes
  • 2.3.9. Dimorpholinodithioacetylacetonato complexes
  • 2.3.10. Thiobiurets and dithiobiurets
  • 2.3.11. Thiosemicarbazide complexes
  • 2.3.12. Diorganophosphides complexes
  • 2.3.13. Complexes as single-source precursors for the formation of oxide-based nanomaterials
  • 2.4. Morphological controls via single-source precursors
  • 2.5. Light-harvesting applications of semiconductors
  • 2.5.1. Solar cell applications
  • 3. Conclusion
  • References
  • Chapter 10: Metal dithiocarbamates as useful precursors to metal sulfides for application in quantum dot-sensitized sola
  • 1. Introduction
  • 2. Sunlight as energy source
  • 3. Generations in PV solar cells
  • 3.1. First-generation solar cells
  • 3.2. Second-generation solar cells
  • 3.3. Third-generation solar cells
  • 4. Performance parameters of solar cells
  • 5. Semiconductor nanoparticles as light-absorbing materials for solar cells
  • 5.1. Synthesis of nanoparticles
  • 5.2. Binary nanoparticles
  • 5.2.1. Antimony sulfide
  • 5.2.2. Bismuth sulfide
  • 5.2.3. Copper sulfide.