|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1273676697 |
003 |
OCoLC |
005 |
20231120010608.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
211007s2022 enk o 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|e rda
|e pn
|c YDX
|d OPELS
|d GZM
|d N$T
|d OCLCF
|d OCLCO
|d OCLCQ
|d OCLCO
|d SFB
|d K6U
|d OCLCQ
|d MNU
|d OCLCO
|
019 |
|
|
|a 1273916950
|
020 |
|
|
|a 9780323910491
|q (electronic bk.)
|
020 |
|
|
|a 0323910491
|q (electronic bk.)
|
020 |
|
|
|z 9780323906340
|
020 |
|
|
|z 0323906346
|
035 |
|
|
|a (OCoLC)1273676697
|z (OCoLC)1273916950
|
050 |
|
4 |
|a QR99.63
|
082 |
0 |
4 |
|a 579.39
|2 23
|
245 |
0 |
0 |
|a Cyanobacterial lifestyle and its applications in biotechnology /
|c edited by Prashant Singh, Maria Fillat and Ajay Kumar.
|
264 |
|
1 |
|a London :
|b Academic Press,
|c [2022]
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- About the editors -- Preface -- 1 -- Cyanobacterial diversity concerning the extreme environment and their bioprospecting -- 1.1 Introduction -- 1.2 Systematic study of extremophiles cyanobacteria -- 1.2.1 Thermophiles -- 1.2.2 Psychrophiles -- 1.2.3 Halophiles -- 1.2.4 Acidophiles -- 1.2.5 Alkaliphiles -- 1.2.6 Xerophilic -- 1.3 Application of extremophile cyanobacteria -- 1.4 Conclusions -- References -- Chapter 2 -- Cyanobacterial nanoparticles: Application in agriculture and allied sectors -- 2.1 Introduction -- 2.2 Nanobiotechnology -- 2.3 Nanoparticles -- 2.3.1 Types of NPs -- 2.4 Cyanobacterial NPs -- 2.5 Synthesis of NPs -- 2.5.1 Physical synthesis -- 2.5.2 Chemical synthesis -- 2.5.3 Biological synthesis of NPs -- 2.5.3.1 Intracellular green synthesis of NPs -- 2.5.3.2 Extracellular green synthesis of NPs -- 2.5.4 Cyanobacteria as a source of NPs synthesis -- 2.5.4.1 Cyanobacterial way of intracellular synthesis of NPs -- 2.5.4.2 Cyanobacterial way of extracellular synthesis of NPs -- 2.5.4.2.1 Cell-free media -- 2.5.4.2.2 Cell biomass filtrate -- 2.5.4.2.3 Biomolecule-based NP synthesis -- 2.6 Characterization of NPs -- 2.7 Mode of action -- 2.8 Applications of cyanobacterial-based NPs -- 2.9 Future projections of cyanobacteria-based NPs -- 2.10 Limitations of NPs -- 2.11 Conclusion -- References -- Chapter 3 -- Cyanobacterial photosynthetic reaction center in wobbly light: Modulation of light energy by orange carotenoid ... -- 3.1 Introduction -- 3.2 Fates of light energy absorbed by pigments -- 3.3 Light-harvesting complex organization in cyanobacteria -- 3.4 Modulation of light energy in cyanobacteria (photoprotective mechanism) -- 3.4.1 Photoprotective mechanism mediated through phycobilisome.
|
505 |
8 |
|
|a 3.4.2 The orange carotenoid proteins (OCP) -- 3.4.3 Full antenna capacity recovery: the role of FRP -- 3.5 Mechanism of OCP-mediated light modulation in cyanobacteria -- 3.5.1 Cyanobacterial reaction center in high light: OCP is a significant game-changer -- 3.5.2 Cyanobacterial reaction center under low light/dark: FRP is a significant game-changer -- 3.6 Conclusions -- References -- 4 -- Back to the past: Improving photosynthesis with cyanobacterial genes -- 4.1 Introduction -- 4.2 Engineering cyanobacterial genes not related to photosynthesis -- 4.2.1 Stress response -- 4.2.2 Amino acid metabolism -- 4.2.3 Lipid metabolism -- 4.3 Manipulation of cyanobacterial genes related to photosynthesis in plants -- 4.3.1 Introduction of CCMs in plants -- 4.3.2 Manipulation of carbon assimilation -- 4.3.3 Manipulation of carbon uptake/transport -- 4.3.4 Sugar partitioning and utilization -- 4.3.5 Introduction of cyanobacterial proteins into the photosynthetic electron transport chain -- 4.3.5.1 The cyanobacterial lost genes: flavodoxin as a source for photosynthesis stress protection -- 4.3.5.2 The cyanobacterial lost genes: flavo-diiron proteins, boosting higher plants photosynthetic processes -- 4.4 Concluding remarks -- References -- 5 -- Promises and challenges for expanding the use of N 2 -fixing cyanobacteria as a fertilizer for sustainable agriculture -- 5.1 Food security, sustainable agriculture, and N-fertilizers -- 5.2 Biological nitrogen fixation -- 5.3 Cyanobacterial BNF -- 5.3.1 Evolutionary origins -- 5.3.2 Ecological implications of N 2 -fixing cyanobacteria -- 5.3.3 Nitrogenase enzyme -- 5.3.3.1 nif genes -- 5.3.3.2 Nitrogenase sensitivity to oxygen -- 5.3.4 N 2 fixation in HC: spatial separation -- 5.3.4.1 N 2 fixation in NHC: temporal separation only, or temporal plus spatial separation ( Trichodesmium).
|
505 |
8 |
|
|a 5.4 Cyanobacteria as biofertilizers -- 5.4.1 Living cyanobacteria-dependent traits -- 5.4.1.1 Release of fixed N 2 -- 5.4.1.2 Release of fixed carbon -- 5.4.1.3 Enhancement of phosphorus availability -- 5.4.1.4 Release of phytohormones -- 5.4.2 Cyanobacterial biomass-dependent traits: mineralization pathway -- 5.5 Cyanobacteria and microalgae mass culture technology -- 5.5.1 Open systems -- 5.5.1.1 Raceway ponds -- 5.5.1.2 Thin-layer cascades -- 5.5.1.3 Turf scrubbers -- 5.5.2 Closed systems -- 5.6 Use of wastewater for cyanobacteria culture -- 5.7 Downstream process: harvesting and drying processes -- 5.8 Large-scale project for cyanobacterial- or microalgal biomass-based fertilizers -- Acknowledgments -- References -- Chapter 6 -- Thermophilic and thermotolerant cyanobacteria: Environmental and biotechnological perspectives -- 6.1 Introduction -- 6.2 Thermophilic cyanobacteria diversity -- 6.3 Temperature stress responses in thermophiles cyanobacteria -- 6.4 Biotechnological application of thermophilic cyanobacteria -- 6.5 Metabolic engineering in cyanobacteria -- 6.6 Conclusion -- Acknowledgments -- References -- Chapter 7 -- Exploring the ability of cyanobacterial ferric uptake regulator (FUR) proteins to increase yeast tolerance to ... -- 7.1 Introduction -- 7.2 Materials and methods -- 7.2.1 Strains and growth conditions -- 7.2.2 Cloning and transformation procedures -- 7.2.3 Western blot -- 7.2.4 Construction of the Green fluorescent protein (GFP)-tagged S. cerevisiae -- 7.2.5 Fluorescence microscopy -- 7.3 Results -- 7.3.1 Generation of S. cerevisiae strains expressing FurA and FurB from Anabaena sp. PCC 7120 -- 7.3.2 Expression of FurB in S. cerevisiae increases its sensitivity to copper and manganese.
|
505 |
8 |
|
|a 7.3.3 The presence of FurB in S. cerevisiae enhances the effects of membrane-damaging compounds and saline stress -- 7.3.4 Fur proteins confer increased tolerance to oxidative stress in S. cerevisiae -- 7.3.5 Recombinant FurB is located in the cytosol of S. cerevisiae -- 7.4 Discussion -- References -- Chapter 8 -- Exploring ecological diversity and biosynthetic potential of cyanobacteria for biofuel production -- 8.1 The biosynthetic potential of cyanobacteria -- 8.2 Genomic diversity and genetic tools for cyanobacteria -- 8.3 Cyanobacterial biofuels -- 8.4 Hydrogen biofuel -- References -- Chapter 9 -- Cyanobacterial availability for CRISPR-based genome editing: Current and future challenges -- 9.1 Introduction -- 9.2 CRISPR/Cas9-based genome editing in cyanobacteria -- 9.3 CRISPR/Cas9-mediated cyanobacterial genome editing -- 9.4 CRISPR/Cas12a-mediated genome editing in cyanobacteria -- 9.5 Dead Cas9 (dCas9) and cyanobacterial gene expression -- 9.6 dCas9 offers an alternative approach for cyanobacterial metabolic engineering -- 9.7 Cyanobacterial genome editing offers markerless selection and gene multiplexing -- 9.8 Cyanobacterial genome editing: key challenges -- 9.9 Conclusion and prospects -- Acknowledgments -- References -- Chapter 10 -- Cyanobacteria and salinity stress tolerance -- 10.1 Introduction -- 10.2 Distribution of cyanobacteria in the saline ecosystem -- 10.3 Sensing salinity by cyanobacterial cell -- 10.3.1 Salinity sensing by SOS pathway -- 10.4 Physiological and biochemical responses -- 10.4.1 Photosynthesis -- 10.4.2 Plasma membrane -- 10.4.3 Nitrogen fixation -- 10.4.4 Formation of ROS and antioxidative defense system -- 10.5 Accumulation of compatible solutes -- 10.5.1 Biosynthesis of compatible solutes -- 10.5.1.1. Glucosyl glycerate (GG) synthesis -- 10.5.2 Glycine betaine synthesis.
|
505 |
8 |
|
|a 10.5.3 Sucrose synthesis -- 10.5.4 Trehalose synthesis -- 10.6 Mechanism of salt tolerance -- 10.6.1 Stress response proteins -- 10.6.1.1 Na+ influx -- 10.6.1.2 Na + efflux -- 10.6.1.3 Limitation of K + uptake -- 10.7 Role of cyanobacteria in the remediation of salt-affected soil -- 10.8 Conclusion -- Acknowledgments -- References -- Chapter 11 -- Cyanobacteria as biostimulants in the paddy fields -- 11.1 Introduction -- 11.2 Cyanobacterial biostimulants and plant growth-promoting potential -- 11.3 Cyanobacteria and their extracts: impacts on crops' productivity -- 11.3.1 Role of cyanobacterial metabolites in soil health improvement -- 11.3.1.1 Nitrogen fixation -- 11.3.1.2 Soils nutrients' bioavailability -- 11.3.1.3 Amendments in soil physical and chemical properties -- 11.3.3 Crops direct growth stimulation -- 11.3.4 Crops' protection against stresses -- 11.3.4.1 Protection against abiotic stresses -- 11.3.4.2 Protection against biotic stresses -- 11.4 Cyanobacteria as biostimulants in agriculture -- 11.5 Other biostimulants and their role in plant growth stimulations -- 11.6 Challenges involved in using cyanobacteria as biostimulants -- 11.7 Prospects and conclusion -- Acknowledgment -- References -- Chapter 12 -- Molecular characterization of local cyanobacterial isolates using 16S rRNA , rpo B, and nif H biomarkers -- 12.1 Introduction -- 12.2 Molecular markers used to assess cyanobacterial biodiversity -- 12.2.1 16S rRNA gene -- 12.2.2 RNA polymerase -- 12.2.3 nif H gene -- 12.3 Biodiversity documentation -- 12.4 Molecular characterization of local cyanobacterial isolates -- 12.5 Phylogenetic analysis of local cyanobacterial isolates using three different biomarkers -- 12.5.1 16S rRNA gene-based phylogenetic tree -- 12.5.2 rpo B gene-based phylogenetic tree -- 12.5.3 nif H gene-based phylogenetic tree.
|
650 |
|
0 |
|a Cyanobacteria
|x Biotechnology.
|
650 |
|
6 |
|a Cyanobact�eries
|x Biotechnologie.
|0 (CaQQLa)201-0178606
|
650 |
|
7 |
|a Cyanobacteria
|x Biotechnology
|2 fast
|0 (OCoLC)fst00885739
|
700 |
1 |
|
|a Singh, Prashant,
|e editor.
|
700 |
1 |
|
|a Fillat, Maria,
|e editor.
|
700 |
1 |
|
|a Kumar, Ajay,
|c PhD,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|z 0323906346
|z 9780323906340
|w (OCoLC)1252962533
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780323906340
|z Texto completo
|