Cargando…

Microsupercapacitors /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Kobashi, Kazufumi (Editor ), Laszczyk, Karolina (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Duxford, United Kingdom ; Cambridge, MA : Woodhead Publishing, an imprint of Elsevier, [2022]
Colección:Woodhead Publishing series in electronic and optical materials.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Microsupercapacitors
  • Copyright
  • Contents
  • Contributors
  • Preface
  • References
  • Part I: Materials and Defining Performance for Microsupercapacitors
  • Chapter 1: Materials under research: Nanomaterials, aerogels, biomaterials, composites, inks
  • 1.1. Introduction
  • 1.2. Principles of working and background
  • 1.3. Nanomaterials, aerogels, and biomaterials
  • 1.4. Pseudocapacitive materials, composites, and inks
  • 1.5. Summary
  • Acknowledgment
  • References
  • Chapter 2: Materials under research II: Silicon-based electrodes
  • 2.1. Introduction
  • 2.2. Porous silicon
  • 2.3. PSi for supercapacitor electrodes
  • 2.4. PSi for microsupercapacitors electrodes
  • 2.5. Summary
  • References
  • Chapter 3: The role and the necessary features of electrolytes for microsupercapacitors
  • 3.1. Introduction
  • 3.2. Types of MSCs and diffusion of electrolyte ions
  • 3.3. Challenges during the transition from liquid to SSEs
  • 3.3.1. Liquid electrolytes and electrode/electrolyte interfaces
  • 3.3.2. Solid-state electrolytes and electrode/electrolyte interfaces
  • 3.4. Electrolytes for MSCs
  • 3.4.1. ISEs
  • 3.4.2. Liquid electrolyte for MSCs
  • 3.4.2.1. Aqueous electrolytes
  • Acidic liquid electrolytes
  • Alkaline electrolyte
  • Neutral electrolyte
  • 3.4.2.2. Organic electrolytes
  • 3.4.2.3. Room temperature ionic liquids (RTILs)
  • 3.4.3. Polymer electrolytes for MSCs
  • 3.4.3.1. SPEs
  • 3.4.3.2. GPEs
  • 3.4.3.3. Aqueous GPEs
  • 3.4.3.4. Acidic GPEs for MSCs
  • 3.4.3.5. Neutral GPEs for MSCs
  • 3.4.3.6. Alkaline GPEs for MSC
  • 3.4.3.7. Organic GPEs
  • 3.4.3.8. Ionogels
  • 3.5. Conclusions and future perspectives
  • References
  • Chapter 4: Characterization of microsupercapacitors
  • 4.1. Introduction
  • 4.2. Electrode and material characterization techniques
  • 4.2.1. Electron microscopy
  • 4.2.2. Surface area.
  • 4.2.3. Thermogravimetric analysis
  • 4.2.4. Atomic force microscopy
  • 4.2.5. Raman
  • 4.2.6. Powder XRD
  • 4.2.7. X-ray photoelectron spectroscopy
  • 4.3. Electrolyte characterization techniques
  • 4.3.1. Ionic conductivity measurement using BDS
  • 4.4. Electrochemical characterization techniques
  • 4.4.1. DC techniques
  • 4.4.2. AC techniques
  • 4.5. Summary
  • References
  • Part II: Applications for Microsupercapacitors
  • Chapter 5: Battery/Supercapacitor hybrid energy storage system in vehicle applications
  • 5.1. Introduction
  • 5.2. The optimization of HESS in EVs
  • 5.3. A case study of HESS in electric buses
  • 5.4. The optimization of HESS in PHEVs
  • 5.5. A brief examination of microsupercapacitor in vehicle applications
  • 5.6. Conclusions
  • Glossary
  • References
  • Chapter 6: Microbatteries
  • References
  • Chapter 7: Energy harvesting
  • References
  • Part III: Advances in Microsupercapacitor Development
  • Chapter 8: Design and technology processes used for microsupercapacitors
  • 8.1. Introduction
  • 8.2. Two-dimensional electrodes
  • 8.2.1. Electrode geometry
  • 8.2.2. Lithography
  • 8.2.3. Film printing
  • 8.3. Three-dimensional electrodes-Toward boosting the energy
  • 8.3.1. Electrodes with conducting buffers/spacers
  • 8.3.2. CVD-based electrodes
  • 8.3.3. 3D scaffold
  • 8.3.4. Microcavities
  • 8.3.5. Sponges
  • 8.3.6. Additive manufacturing
  • 8.3.7. Stamping
  • 8.4. Encapsulation and packaging
  • 8.5. Summary
  • References
  • Chapter 9: Fiber-shaped micro-supercapacitors
  • 9.1. History of fiber-shaped supercapacitors
  • 9.2. Fiber-shaped micro-supercapacitors (FMSCs)
  • 9.2.1. Device configurations of FMSCs
  • 9.2.2. Design considerations for FMSCs
  • 9.3. FMSCs with different fiber scaffolds
  • 9.3.1. FMSCs based on metal wires
  • 9.3.2. FMSCs based on carbon-based fibers
  • 9.3.2.1. FMSC based on carbon fibers.
  • 9.3.2.2. FMSCs based on CNT fibers
  • 9.3.2.3. FMSCs based on graphene-based fibers
  • 9.4. Conclusion and outlook
  • References
  • Chapter 10: Recent research and issues
  • 10.1. Introduction
  • 10.2. Multifunctional microsupercapacitors
  • 10.3. Microsupercapacitors for the medical purpose
  • References
  • Index.