Road traffic modelling and management : using statistical monitoring and deep learning /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
2022.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Road Traffic Modeling and Management
- Copyright
- Contents
- 1 Introduction
- 1.1 Introduction
- 1.1.1 Types road traffic sensors
- 1.1.2 Key traffic features
- 1.1.3 Traffic flow modeling
- 1.2 Objectives and structure of the book
- References
- 2 Road traffic modeling
- 2.1 Introduction
- 2.2 Traffic detector types
- 2.2.1 Embedded traffic detectors
- 2.2.2 Intrusive detectors
- 2.2.3 Non-intrusive detectors
- 2.3 Traffic modeling model-based approaches
- 2.3.1 Microscopic approach
- 2.3.1.1 The microscopic variables
- 2.3.1.2 Microscopic models
- 2.3.2 Mesoscopic approach
- 2.3.2.1 Mesoscopic models
- 2.3.3 Macroscopic approach
- 2.3.3.1 The macroscopic variables
- 2.3.4 The macroscopic models
- 2.3.4.1 First-order macroscopic traffic models
- 2.3.4.2 The cell transmission model
- 2.3.5 PWSL traffic flow model
- 2.3.5.1 PWSL discrete dynamics
- 2.3.5.2 PWSL continuous dynamics
- 2.3.5.3 Boundary conditions
- 2.3.5.4 Insider road section traffic density dynamics
- 2.3.5.4.1 Simple link density dynamics
- 2.3.5.4.2 Merge and diverge links dynamics
- Merge links dynamics (the ON ramp configuration)
- Diverge links dynamics (the OFF ramp configuration)
- 2.3.5.5 PWSL parameter calibration
- Geometric and data traffic description
- Calibration methodology
- 2.3.6 Model validation and simulation results
- 2.3.6.1 Measurements of effectiveness
- 2.4 Conclusion
- References
- 3 Road traffic density estimation
- 3.1 Introduction
- 3.2 Observability of PWSL model
- 3.2.1 Generalities of observability study
- 3.2.2 PWSL observability study
- 3.3 PWSL-based observer
- 3.3.1 Principle and description of hybrid observer
- 3.3.2 Synthesis of PWSL-based hybrid observer
- 3.3.2.1 Discrete mode identification
- 3.3.2.2 Continuous state estimation.
- 3.3.3 The PWSL-Kalman filter design for traffic state estimation
- 3.4 Application
- 3.5 Discussion
- References
- 4 Model-based techniques for traffic congestion detection
- 4.1 Introduction
- 4.2 The PWSL-KF design for traffic state estimation
- 4.2.1 PWSL approach
- 4.2.2 Kalman filter for traffic density estimation
- 4.3 kNN-based monitoring charts
- 4.3.1 Mixed kNN-Shewhart approach
- 4.3.2 Coupled kNN-EWMA approach
- 4.3.3 kNN-based schemes with nonparametric thresholds
- 4.3.3.1 KDE
- Kernel function selection
- Bandwidth selection
- 4.3.3.2 Nonparametric kNN-based detectors
- 4.4 Combining PWSL model with monitoring schemes
- 4.5 Results and case study
- 4.5.1 Model performance evaluation
- 4.5.2 Detection results
- 4.5.2.1 Performance evaluation
- 4.5.2.2 Detection of abrupt congestions
- 4.5.2.3 Scenarios with intermittent congestion
- 4.5.2.4 Detection of gradual congestion
- 4.6 Discussion
- References
- 5 Traffic congestion detection: data-based techniques
- 5.1 Introduction
- 5.2 Data preprocessing and denoising
- 5.2.1 Exponentially weighted moving-average (EWMA) filter
- 5.2.2 Wavelet-based multiscale filtering
- 5.3 Univariate statistical monitoring schemes
- 5.3.1 EWMA (exponentially weighted moving average)
- 5.3.2 Generalized likelihood ratio charts
- 5.4 Features extraction with principle component analysis (PCA)
- 5.4.1 Features extraction with PCA
- 5.4.2 Determination of model order
- optimal dimension of PC
- 5.4.2.1 Cumulative percent variance
- 5.4.2.2 Cross-validation
- 5.4.2.3 Scree test
- 5.4.2.4 Parallel analysis
- 5.4.2.5 Eigenvalue-one rule
- 5.5 PCA-based anomaly detection charts
- 5.5.1 SPE chart
- 5.5.2 Hotelling's T2
- 5.5.3 The basic procedure for the PCA with Matlab�
- 5.5.4 A combined T2 and Q index.
- 5.5.5 Anomaly detection using coupled EWMA-based SPE and T2 methods
- 5.5.5.1 The amalgamated Q-EWMA monitoring scheme
- 5.5.5.2 The amalgamated T2-EWMA monitoring scheme
- 5.5.6 Parametric and nonparametric PCA-based monitoring charts
- 5.6 Combining PCA with monitoring schemes for traffic congestion detection
- 5.7 Results and discussion
- 5.7.1 Data description
- 5.7.2 Data analysis
- 5.7.3 PCA modeling
- 5.7.4 Traffic anomalies detection
- 5.7.4.1 Detection of abrupt congestions
- 5.7.4.2 Scenarios with intermittent congestion
- 5.7.4.3 Detection of gradual congestion
- 5.8 Discussion
- References
- 6 Recurrent and convolutional neural networks for traffic management
- 6.1 Introduction
- 6.2 Recurrent neural network for traffic time series data
- 6.2.1 Data collection
- 6.2.2 Preprocessing the data before building a model
- 6.2.3 Data smoothing
- 6.2.3.1 Exponentially weighted moving average (EWMA) filter
- 6.2.3.2 Wavelet-based multiscale filter
- 6.2.4 Recurrent neural network (RNN)-based models
- 6.2.4.1 RNN model
- 6.2.4.2 LSTM model
- 6.2.4.3 LSTM implementation steps
- 6.2.4.4 Enhanced performance of LSTM models
- 6.2.5 Evaluating the model
- 6.2.6 GRU models
- 6.3 Road traffic forecasting using LSTM- and RNN-driven models
- 6.3.1 Proposed traffic forecasting methods
- 6.3.1.1 Forecasting results and discussion
- 6.3.1.2 Data description
- 6.3.2 Forecasting results
- 6.4 Detecting traffic congestion using deep learning-based monitoring charts
- 6.4.1 EWMA and DEWMA monitoring schemes
- 6.4.1.1 EWMA monitoring scheme
- 6.4.1.2 Double EWMA scheme
- 6.4.1.3 KDE-based DEWMA monitoring scheme
- 6.4.2 Traffic congestion detection using deep learning-based DEWMA schemes
- 6.4.3 Traffic congestion detection: case study
- 6.4.3.1 LSTM- and GRU-based traffic flow modeling
- 6.4.3.2 Detection results.
- 6.4.3.2.1 Abrupt traffic congestion
- 6.4.3.2.2 Detection of gradual congestion
- 6.5 Vision-based traffic monitoring using CNN
- 6.5.1 Convolutional neural networks
- 6.5.1.1 Converting network traffic to images
- 6.5.1.2 CNN for network traffic prediction
- 6.5.2 TensorFlow integration with Python
- 6.5.2.1 Quickstart of TensorFlow Lite with Python
- 6.5.2.2 Installation of the TensorFlow Lite for Python
- 6.6 Discussion
- References
- 7 Conclusion and further research directions
- 7.1 Introduction
- References
- Index
- Back Cover.