Cargando…

Road traffic modelling and management : using statistical monitoring and deep learning /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Harrou, Fouzi (Editor )
Formato: eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2022.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1273667479
003 OCoLC
005 20231120010607.0
006 m o d
007 cr |n|||||||||
008 211007s2022 ne o 000 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d OPELS  |d OCLCO  |d UKAHL  |d OCLCF  |d OCLCO  |d SFB  |d OCLCQ  |d WAU  |d OCLCO 
019 |a 1273913666  |a 1277046289 
020 |a 9780128234334  |q (electronic bk.) 
020 |a 0128234334  |q (electronic bk.) 
020 |z 9780128234327 
035 |a (OCoLC)1273667479  |z (OCoLC)1273913666  |z (OCoLC)1277046289 
050 4 |a HE333 
082 0 4 |a 388.4131015118  |2 23 
245 0 0 |a Road traffic modelling and management :  |b using statistical monitoring and deep learning /  |c Fouzi Harrou [and more]. 
260 |a Amsterdam :  |b Elsevier,  |c 2022. 
300 |a 1 online resource 
505 0 |a Front Cover -- Road Traffic Modeling and Management -- Copyright -- Contents -- 1 Introduction -- 1.1 Introduction -- 1.1.1 Types road traffic sensors -- 1.1.2 Key traffic features -- 1.1.3 Traffic flow modeling -- 1.2 Objectives and structure of the book -- References -- 2 Road traffic modeling -- 2.1 Introduction -- 2.2 Traffic detector types -- 2.2.1 Embedded traffic detectors -- 2.2.2 Intrusive detectors -- 2.2.3 Non-intrusive detectors -- 2.3 Traffic modeling model-based approaches -- 2.3.1 Microscopic approach -- 2.3.1.1 The microscopic variables -- 2.3.1.2 Microscopic models -- 2.3.2 Mesoscopic approach -- 2.3.2.1 Mesoscopic models -- 2.3.3 Macroscopic approach -- 2.3.3.1 The macroscopic variables -- 2.3.4 The macroscopic models -- 2.3.4.1 First-order macroscopic traffic models -- 2.3.4.2 The cell transmission model -- 2.3.5 PWSL traffic flow model -- 2.3.5.1 PWSL discrete dynamics -- 2.3.5.2 PWSL continuous dynamics -- 2.3.5.3 Boundary conditions -- 2.3.5.4 Insider road section traffic density dynamics -- 2.3.5.4.1 Simple link density dynamics -- 2.3.5.4.2 Merge and diverge links dynamics -- Merge links dynamics (the ON ramp configuration) -- Diverge links dynamics (the OFF ramp configuration) -- 2.3.5.5 PWSL parameter calibration -- Geometric and data traffic description -- Calibration methodology -- 2.3.6 Model validation and simulation results -- 2.3.6.1 Measurements of effectiveness -- 2.4 Conclusion -- References -- 3 Road traffic density estimation -- 3.1 Introduction -- 3.2 Observability of PWSL model -- 3.2.1 Generalities of observability study -- 3.2.2 PWSL observability study -- 3.3 PWSL-based observer -- 3.3.1 Principle and description of hybrid observer -- 3.3.2 Synthesis of PWSL-based hybrid observer -- 3.3.2.1 Discrete mode identification -- 3.3.2.2 Continuous state estimation. 
505 8 |a 3.3.3 The PWSL-Kalman filter design for traffic state estimation -- 3.4 Application -- 3.5 Discussion -- References -- 4 Model-based techniques for traffic congestion detection -- 4.1 Introduction -- 4.2 The PWSL-KF design for traffic state estimation -- 4.2.1 PWSL approach -- 4.2.2 Kalman filter for traffic density estimation -- 4.3 kNN-based monitoring charts -- 4.3.1 Mixed kNN-Shewhart approach -- 4.3.2 Coupled kNN-EWMA approach -- 4.3.3 kNN-based schemes with nonparametric thresholds -- 4.3.3.1 KDE -- Kernel function selection -- Bandwidth selection -- 4.3.3.2 Nonparametric kNN-based detectors -- 4.4 Combining PWSL model with monitoring schemes -- 4.5 Results and case study -- 4.5.1 Model performance evaluation -- 4.5.2 Detection results -- 4.5.2.1 Performance evaluation -- 4.5.2.2 Detection of abrupt congestions -- 4.5.2.3 Scenarios with intermittent congestion -- 4.5.2.4 Detection of gradual congestion -- 4.6 Discussion -- References -- 5 Traffic congestion detection: data-based techniques -- 5.1 Introduction -- 5.2 Data preprocessing and denoising -- 5.2.1 Exponentially weighted moving-average (EWMA) filter -- 5.2.2 Wavelet-based multiscale filtering -- 5.3 Univariate statistical monitoring schemes -- 5.3.1 EWMA (exponentially weighted moving average) -- 5.3.2 Generalized likelihood ratio charts -- 5.4 Features extraction with principle component analysis (PCA) -- 5.4.1 Features extraction with PCA -- 5.4.2 Determination of model order -- optimal dimension of PC -- 5.4.2.1 Cumulative percent variance -- 5.4.2.2 Cross-validation -- 5.4.2.3 Scree test -- 5.4.2.4 Parallel analysis -- 5.4.2.5 Eigenvalue-one rule -- 5.5 PCA-based anomaly detection charts -- 5.5.1 SPE chart -- 5.5.2 Hotelling's T2 -- 5.5.3 The basic procedure for the PCA with Matlab� -- 5.5.4 A combined T2 and Q index. 
505 8 |a 5.5.5 Anomaly detection using coupled EWMA-based SPE and T2 methods -- 5.5.5.1 The amalgamated Q-EWMA monitoring scheme -- 5.5.5.2 The amalgamated T2-EWMA monitoring scheme -- 5.5.6 Parametric and nonparametric PCA-based monitoring charts -- 5.6 Combining PCA with monitoring schemes for traffic congestion detection -- 5.7 Results and discussion -- 5.7.1 Data description -- 5.7.2 Data analysis -- 5.7.3 PCA modeling -- 5.7.4 Traffic anomalies detection -- 5.7.4.1 Detection of abrupt congestions -- 5.7.4.2 Scenarios with intermittent congestion -- 5.7.4.3 Detection of gradual congestion -- 5.8 Discussion -- References -- 6 Recurrent and convolutional neural networks for traffic management -- 6.1 Introduction -- 6.2 Recurrent neural network for traffic time series data -- 6.2.1 Data collection -- 6.2.2 Preprocessing the data before building a model -- 6.2.3 Data smoothing -- 6.2.3.1 Exponentially weighted moving average (EWMA) filter -- 6.2.3.2 Wavelet-based multiscale filter -- 6.2.4 Recurrent neural network (RNN)-based models -- 6.2.4.1 RNN model -- 6.2.4.2 LSTM model -- 6.2.4.3 LSTM implementation steps -- 6.2.4.4 Enhanced performance of LSTM models -- 6.2.5 Evaluating the model -- 6.2.6 GRU models -- 6.3 Road traffic forecasting using LSTM- and RNN-driven models -- 6.3.1 Proposed traffic forecasting methods -- 6.3.1.1 Forecasting results and discussion -- 6.3.1.2 Data description -- 6.3.2 Forecasting results -- 6.4 Detecting traffic congestion using deep learning-based monitoring charts -- 6.4.1 EWMA and DEWMA monitoring schemes -- 6.4.1.1 EWMA monitoring scheme -- 6.4.1.2 Double EWMA scheme -- 6.4.1.3 KDE-based DEWMA monitoring scheme -- 6.4.2 Traffic congestion detection using deep learning-based DEWMA schemes -- 6.4.3 Traffic congestion detection: case study -- 6.4.3.1 LSTM- and GRU-based traffic flow modeling -- 6.4.3.2 Detection results. 
505 8 |a 6.4.3.2.1 Abrupt traffic congestion -- 6.4.3.2.2 Detection of gradual congestion -- 6.5 Vision-based traffic monitoring using CNN -- 6.5.1 Convolutional neural networks -- 6.5.1.1 Converting network traffic to images -- 6.5.1.2 CNN for network traffic prediction -- 6.5.2 TensorFlow integration with Python -- 6.5.2.1 Quickstart of TensorFlow Lite with Python -- 6.5.2.2 Installation of the TensorFlow Lite for Python -- 6.6 Discussion -- References -- 7 Conclusion and further research directions -- 7.1 Introduction -- References -- Index -- Back Cover. 
650 0 |a Traffic engineering  |x Mathematical models. 
650 0 |a Traffic engineering. 
650 6 |a Technique de la circulation  |0 (CaQQLa)201-0003124  |x Mod�eles math�ematiques.  |0 (CaQQLa)201-0379082 
650 6 |a Technique de la circulation.  |0 (CaQQLa)201-0003124 
650 7 |a traffic engineering.  |2 aat  |0 (CStmoGRI)aat300054508 
650 7 |a Traffic engineering  |2 fast  |0 (OCoLC)fst01154087 
650 7 |a Traffic engineering  |x Mathematical models  |2 fast  |0 (OCoLC)fst01154109 
700 1 |a Harrou, Fouzi,  |e editor. 
776 0 8 |c Original  |z 0128234326  |z 9780128234327  |w (OCoLC)1257402451 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128234327  |z Texto completo