|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1269213320 |
003 |
OCoLC |
005 |
20231120010606.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
210927s2022 ne o 001 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d OCLCO
|d OCLCF
|d SOE
|d N$T
|d OCLCO
|d OCLCQ
|d OCLCO
|d K6U
|d SFB
|d OCLCQ
|
019 |
|
|
|a 1287275224
|a 1287870887
|
020 |
|
|
|a 0323886329
|
020 |
|
|
|a 9780323886321
|q (electronic bk.)
|
020 |
|
|
|z 9780323898706
|
020 |
|
|
|z 032389870X
|
035 |
|
|
|a (OCoLC)1269213320
|z (OCoLC)1287275224
|z (OCoLC)1287870887
|
050 |
|
4 |
|a TP155.2.E58
|
082 |
0 |
4 |
|a 660.0286
|2 23
|
100 |
1 |
|
|a Segovia-Hern�andez, Juan Gabriel,
|e author.
|
245 |
1 |
0 |
|a Improvements in bio-based building blocks production through process intensification and sustainability concepts /
|c Juan Gabriel Segovia-Hernandez, Eduardo Sanchez-Ramirez, Cesar Ramirez-Marquez, Gabriel Contreras-Zaraz�ua.
|
264 |
|
1 |
|a Amsterdam, Netherlands :
|b Elsevier,
|c [2022]
|
300 |
|
|
|a 1 online resource (1 volume)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Includes index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover -- Improvements in Bio-Based Building Blocks Production Through Process Intensification and Sustainability Concepts -- Copyright Page -- Contents -- Author biographies -- 1 Why are bio-based chemical building blocks needed? -- 1.1 Are bio-based chemical building blocks needed? -- 1.1.1 Drop-in bio-based chemicals -- 1.1.2 Novel bio-based chemicals -- 1.1.3 C6 and C6/C5 Sugar -- 1.1.3.1 Fermentation products -- 1.1.3.2 Chemical transformation products -- 1.1.4 Plant-based oil -- 1.1.5 Algae oil -- 1.1.6 Organic solutions -- 1.1.7 Lignin -- 1.1.8 Pyrolysis oil -- References -- 2 Process intensification and sustainability -- 2.1 Process intensification and sustainability in bioblocks -- References -- 3 Basic concepts on simulation of (bio)chemical processes -- 3.1 (Bio)chemical processes -- 3.2 Concept of simulation in bioprocesses (chemical) -- 3.2.1 Simulation categories for biochemical processes -- 3.2.1.1 Steady-state simulation -- 3.2.1.2 Dynamic simulation -- 3.2.2 Process simulation biochemical applications -- 3.2.2.1 Synthesis and process design biochemicals -- 3.2.2.2 Operation, control, and safety of processes biochemicals -- 3.3 Concept of modeling and tools in process biochemicals -- 3.4 The role of simulation and process modeling biochemicals -- 3.5 The role of process optimization biochemicals -- References -- 4 Bioethanol -- 4.1 Bioethanol -- 4.2 Petrochemical route of ethanol production -- 4.2.1 Process, raw material, and kinetics -- 4.2.2 Performance index in the production of ethanol through petrochemical -- 4.2.3 Disadvantages in the production of ethanol through petrochemical -- 4.3 Conventional bioethanol production process -- 4.3.1 Raw material for the production of bioethanol -- 4.3.2 Production of bioethanol from lignocellulosic biomass -- 4.3.2.1 Pretreatment -- 4.3.2.2 Enzymatic hydrolysis.
|
505 |
8 |
|
|a 4.3.2.3 Detoxification -- 4.3.2.4 Fermentation -- 4.3.2.5 Recovery and purification of bioethanol -- 4.3.3 Advantages and disadvantages of bioethanol production -- 4.4 Problems of the process for obtaining conventional bioethanol -- 4.5 Proposals to intensify the process for obtaining bioethanol -- 4.5.1 Synthesis -- 4.5.2 Design -- 4.5.3 Control -- 4.6 Conclusions -- References -- 5 Biobutanol -- 5.1 General characteristics, uses, and applications -- 5.2 Production of butanol from fossil sources -- 5.3 Butanol production by the biochemical route -- 5.3.1 Metabolic pathway of acetone-butanol-ethanol fermentation -- 5.3.2 Conventional raw material to produce butanol -- 5.3.2.1 First-generation biobutanol -- 5.3.2.2 Second-generation biobutanol -- 5.3.2.3 Third- and fourth-generation biobutanol -- 5.3.2.4 Problems associated with acetone-butanol-ethanol fermentation -- 5.3.3 Isopropanol-butanol-ethanol fermentation -- 5.4 Process intensification applied to butanol production -- 5.4.1 Process intensification in the reactive zone -- 5.4.1.1 Gas stripping -- 5.4.1.2 Vacuum fermentation -- 5.4.1.3 Pervaporation -- 5.4.1.4 Liquid-liquid extraction -- 5.4.1.5 Adsorption -- 5.4.2 Process intensification in the downstream process -- 5.5 Controllability studies applied to intensified alternatives for biobutanol purification -- 5.6 Conclusions -- References -- 6 Furfural -- 6.1 Introduction -- 6.2 Uses of furfural -- 6.3 Current furfural markets -- 6.4 Stoichiometric and kinetics models for furfural production -- 6.5 Current technologies for furfural production -- 6.6 New intensified proposes for furfural production -- 6.6.1 Advances in furfural purification -- 6.6.2 Objective functions -- 6.6.3 Optimization results -- 6.6.4 Advances in furfural purification using hybrid extractive distillation schemes -- 6.7 Conclusions -- References -- 7 Levulinic acid.
|
505 |
8 |
|
|a 7.1 Introduction -- 7.2 Current uses of levulinic acid -- 7.3 Current levulinic acid markets -- 7.4 Kinetics models for levulinic acid production -- 7.5 Current for levulinic acid production -- 7.6 New intensified proposals for levulinic acid production -- 7.7 Conclusions -- References -- 8 Ethyl levulinate -- 8.1 Introduction -- 8.2 Current applications and markets of ethyl levulinate -- 8.3 Kinetics models for ethyl levulinate production -- 8.4 Current technologies for ethyl levulinate production -- 8.5 Current advances in ethyl levulinate production -- 8.6 Conclusions -- References -- 9 2,3-Butanediol -- 9.1 Introduction -- 9.2 Production of 2,3-BD from fossil and renewable sources -- 9.2.1 Microorganisms useful in the production of 2,3-BD -- 9.3 Raw material for 2,3-BD production -- 9.3.1 Nonrenewable raw materials -- 9.3.2 Renewable raw materials -- 9.4 Process intensification (PI) in 2,3-BD production -- 9.5 PI in 2,3-BD recovery -- 9.6 Conclusions -- References -- 10 Methyl ethyl ketone -- 10.1 Introduction -- 10.2 MEK production -- 10.2.1 MEK production from nonrenewable sources -- 10.2.2 MEK production from renewable sources -- 10.2.2.1 Kinetic equations to methyl ethyl ketone production -- 10.2.3 Production ok methyl ethyl ketone through process intensified schemes -- 10.3 Purification of MEK through intensified process -- 10.4 Conclusion and future insights -- References -- 11 Lactic acid -- 11.1 Lactic acid -- 11.1.1 Uses of lactic acid -- 11.1.2 Market and demand for lactic acid -- 11.2 Chemical route of lactic acid production -- 11.2.1 Process, raw material, and reactions -- 11.2.2 Performance index in lactic acid production via petrochemical -- 11.2.3 Disadvantages in the production of lactic acid via petrochemical -- 11.3 Conventional process of production of lactic acid via fermentation of biomass.
|
505 |
8 |
|
|a 11.3.1 Raw material for the production of lactic acid via biomass -- 11.3.2 Lactic acid production via biomass -- 11.3.2.1 Fermentation route -- 11.3.2.2 Lactic acid recovery and purification processes -- 11.3.3 Advantages and disadvantages of lactic acid production via biomass -- 11.3.4 Problems in the production of lactic acid via biomass -- 11.4 Proposals for intensification of the process of obtaining lactic acid via biomass -- 11.4.1 Synthesis and design -- 11.4.2 Optimization -- 11.4.2.1 Performance indices -- 11.4.2.1.1 Economic index -- 11.4.2.1.2 Environmental index -- 11.4.2.1.3 Inherent safety index -- 11.4.2.2 Optimization results -- 11.5 Conclusions -- References -- 12 Future insights in bio-based chemical building blocks -- 12.1 Future insights in bio-based chemical building blocks -- References -- Index -- Back Cover.
|
650 |
|
0 |
|a Green chemistry.
|
650 |
|
0 |
|a Biomass
|x Refining.
|
650 |
|
6 |
|a Chimie verte.
|0 (CaQQLa)201-0337434
|
650 |
|
6 |
|a Biomasse
|0 (CaQQLa)201-0219666
|x Affinage.
|0 (CaQQLa)201-0373909
|
650 |
|
7 |
|a Green chemistry.
|2 fast
|0 (OCoLC)fst00912867
|
700 |
1 |
|
|a Sanchez-Ramirez, Eduardo,
|e author.
|
700 |
1 |
|
|a Ramirez-Marquez, Cesar,
|e author.
|
700 |
1 |
|
|a Contreras-Zaraz�ua, Gabriel,
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Segovia-Hern�andez, Juan Gabriel.
|t Improvements in bio-based building blocks production through process intensification and sustainability concepts.
|d Amsterdam : Elsevier, 2021
|z 9780323898706
|w (OCoLC)1264400160
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780323898706
|z Texto completo
|