Cargando…

Radiation-processed polysaccharides : emerging roles in agriculture /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Naeem, M., 1980- (Editor ), Aftab, Tariq (Editor ), Khan, M. Masroor A. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, United Kingdom : Academic Press, [2022]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Radiation-Processed Polysaccharides: Emerging Roles in Agriculture
  • Copyright
  • Contents
  • Contributors
  • Chapter One: Occurrence, distribution, and structure of natural polysaccharides
  • 1. Introduction
  • 2. Classification of polysaccharides based on their sources
  • 2.1. Polysaccharides from higher plants
  • 2.1.1. Starch
  • 2.1.2. Cellulose
  • 2.1.3. Guar gum
  • 2.2. Algal polysaccharides
  • 2.2.1. Alginate
  • 2.2.2. Galactan
  • 2.2.3. Carrageenan
  • 2.3. Polysaccharides from animal origin
  • 2.3.1. Chitin and chitosan
  • 2.3.2. Hyaluronic acid
  • 2.4. Polysaccharides from microbial origin
  • 2.4.1. Dextran
  • 2.4.2. Pullulan
  • 2.4.3. Xanthan gum
  • 3. Properties of naturally polysaccharides
  • 3.1. Physical and chemical properties
  • 3.2. Thermal properties
  • 3.3. Mechanical properties
  • 3.4. Solubility
  • 3.5. Biological properties
  • 4. Molecular weight and molecular weight distribution
  • 5. Structure of natural polysaccharides
  • 5.1. Starch
  • 5.2. Cellulose
  • 5.3. Alginate
  • 5.4. Carrageenan (red algae)
  • 5.5. Chitin and chitosan
  • 5.6. Hyaluronic acid
  • 5.7. Dextran
  • 5.8. Pullulan
  • 6. Conclusions
  • References
  • Chapter Two: Synthesis, characterization, and modification of natural polysaccharides
  • 1. Introduction
  • 2. Classification of natural polysaccharides
  • 2.1. Cationic polysaccharides
  • 2.2. Anionic polysaccharides
  • 2.3. Nonionic polysaccharides
  • 3. Synthesis of natural polysaccharide
  • 3.1. Polycondensation
  • 3.2. Enzymatic polymerization
  • 3.2.1. Enzymatic polycondensation
  • 3.2.2. Enzymatic ring-opening polyaddition
  • 3.3. Ring opening polymerization
  • 3.4. Stepwise elongation
  • 4. Characterization of natural polysaccharides
  • 4.1. Solubility testing
  • 4.2. Swelling testing
  • 4.3. Imaging analysis
  • 4.3.1. Scanning electron microscopy (SEM).
  • 4.3.2. Atomic force microscopy (AFM)
  • 4.3.3. Transmission electron microscopy (TEM)
  • 4.4. Crystallinity analysis
  • 4.5. Antimicrobial testing
  • 4.5.1. Determination of minimal inhibitory concentration
  • 4.5.2. Determination of minimum bactericidal concentrations
  • 4.5.3. Antimicrobial activity by disc and well diffusion method
  • 4.6. Antioxidant testing
  • 4.6.1. DPPH radical assay
  • 4.6.2. Hydroxyl radical assay
  • 4.6.3. Superoxide radical assay
  • 4.6.4. Reducing power assay
  • 4.7. Tensile testing
  • 4.8. Thermal testing
  • 4.9. Determination of molecular weight
  • 4.9.1. High performance liquid chromatography
  • 4.9.2. Gel permeation chromatography
  • 4.9.3. Mass spectrometry
  • 4.9.4. Other methods
  • 4.10. Determination of degree of deacetylation
  • 4.11. Determination of radiation degradation
  • 5. Modification of natural polysaccharides
  • 5.1. Radiation modification
  • 5.1.1. Radiation grafting on polysaccharides
  • 5.1.2. Radiation crosslinking of polysaccharides
  • 5.2. Plasma-enhanced modification
  • 5.3. Ultrasonic modification
  • 5.4. Enzymatic modification
  • 5.5. Chemical modification
  • 5.5.1. Sulfation
  • 5.5.2. Oxidation
  • 5.5.3. Esterification
  • 5.5.4. Acetylation
  • 6. Application of radiation processed polysaccharides (RPPs)
  • 6.1. Wastewater treatment
  • 6.2. Agricultural Application
  • 6.3. Biomedical application
  • 7. Conclusion
  • References
  • Chapter Three: Biodegradable and active polymeric matrices reinforced with silver-titania nanoparticles for state-of-the- ...
  • 1. Background
  • 2. Nanoparticles in food packaging
  • 2.1. Silver nanoparticles in polymeric matrix
  • 2.2. Titanium dioxide nanoparticles in polymeric matrix
  • 3. Properties of food packaging
  • 3.1. Mechanical properties
  • 3.2. Thermal properties
  • 3.3. Environmental barrier
  • 4. Characterization methods
  • 5. Reaction mechanism.
  • 5.1. Production of active species
  • 5.2. Reaction of active species
  • 6. Conclusions
  • Acknowledgment
  • References
  • Chapter Four: Polysaccharides and radiation technology
  • 1. Introduction
  • 2. Radiation technology
  • 3. Polysaccharides: Starch and cellulose
  • 4. Polysaccharides classification
  • 5. Bacterial polysaccharides
  • 6. Marine polysaccharides
  • 6.1. Main constitutes of seaweed polysaccharides
  • 6.2. Commercial aspects of seaweeds
  • 6.3. Sulfated polysaccharides
  • 7. Chemically modified polysaccharides
  • 8. Polysaccharides and ionizing radiation
  • 9. Concluding remarks
  • References
  • Chapter Five: Radiation processed polysaccharides in food production, preservation and packaging applications
  • 1. Introduction
  • 2. Radiation sources for food
  • 3. Radiation processed polysaccharides
  • 3.1. Chitosan
  • 3.2. Alginate
  • 3.3. Carrageenan
  • 3.4. Starch
  • 3.5. Cellulose
  • 4. Radiation chemistry of polysaccharides and food
  • 4.1. Radiation-chemical reaction of water
  • 4.2. Radiation chemical reactions of simple organic molecules
  • 4.3. Radiation chemical reactions of polymer molecules
  • 4.4. Radiation chemistry of polysaccharides
  • 4.4.1. Radurization
  • 4.4.2. Radicidation
  • 4.4.3. Radappertization
  • 5. Application of radiation processed polysaccharides in agriculture
  • 6. Application of radiation processed polysaccharides in food preservation
  • 7. Application of radiation processed polysaccharides in food packaging
  • 8. Irradiation detection techniques in food and agricultural products
  • 8.1. Physical methods
  • 8.2. Chemical methods
  • 8.3. DNA techniques
  • 8.4. Biological methods
  • 9. Nutritional value of foods after application of irradiated polysaccharides
  • 10. Regulations regarding irradiation processed food and food products
  • 11. Conclusion
  • References.
  • Chapter Six: Prospects and probabilities of irradiated cellulose and carrageenan in food and agricultural industries
  • 1. Introduction
  • 2. Cellulose
  • 2.1. Structure
  • 2.2. Conversion of cellulose
  • 2.3. Sources of cellulose
  • 2.4. Pre-treatments of cellulose
  • 2.5. Irradiation techniques used for cellulose
  • 2.5.1. Gamma irradiation of cellulose
  • 2.5.2. Microwave irradiation
  • 2.5.3. Electron beam irradiation
  • 2.5.4. Ultrasonic irradiation
  • 2.5.5. UV-irradiation
  • 2.6. Scopes of irradiated cellulose
  • 2.6.1. Application of irradiated cellulose for developing bioactive packaging
  • 2.6.2. Irradiated cellulose-based adsorbent
  • 2.6.3. Irradiation of cellulosic biomass to produce biobased fuel
  • 3. Carrageenan
  • 3.1. Application of carrageenan
  • 3.1.1. Irradiated carrageenan (IC) in increasing crop productivity
  • 3.1.2. Irradiation induced modification in carrageenan-based film and coating
  • References
  • Chapter Seven: Potential of biopriming with irradiated chitosan for sugarcane micropropagation
  • 1. Introduction
  • 2. Chitosan: A natural priming agent
  • 2.1. Effects of chitosan and its derivative on tissue culture plants
  • 2.2. Chitosan and its derivative in defense mechanism against various biotic and abiotic stresses and induced resistance ...
  • Acknowledgments
  • References
  • Further reading
  • Chapter Eight: Irradiated starch: Roles in agricultural and food production
  • 1. Introduction
  • 2. Sources of starch
  • 3. Effects of irradiation in starch
  • 3.1. Impact of gamma and electron beam radiation on starch characteristics
  • 3.2. Impact of UV irradiation on starch characteristics
  • 4. Irradiation in the development of starch-based edible films and coatings
  • 5. Applications in food and agricultural industry
  • 5.1. Application of irradiated starch in cereal products
  • 5.1.1. Bread
  • 5.1.2. Pasta and snacks.
  • 5.1.3. Muffins and cookies
  • 5.2. Meat products
  • References
  • Chapter Nine: Radiation-processed polysaccharides and the enrichment of medicinally imperative bioactive compounds in pla ...
  • 1. Introduction
  • 2. Processing of polysaccharides through ionizing radiations
  • 3. Oligosaccharides regulate activities of important enzymes in plants
  • 4. Oligosaccharides and the secondary metabolite elicitation under normal and perturbed environmental conditions
  • 5. Oligosaccharide-signaling under normal and perturbed environmental conditions
  • 6. Conclusion
  • References
  • Chapter Ten: Fractions of gamma-irradiated sodium alginate enhance the growth, enzymatic activities, and essential oil pr ...
  • 1. Introduction
  • 2. Materials and methods
  • 2.1. Experimental layout and treatment pattern
  • 2.2. Soil characteristics
  • 2.3. Filling of pots for experimentation
  • 2.4. Column chromatography for the separation of different fractions
  • 2.5. Determinations
  • 2.5.1. Growth biomarkers
  • Fresh weight of shoot
  • Fresh weight of root
  • 2.5.2. Physiological parameters
  • Estimation of chlorophyll and carotenoids content
  • Nitrate reductase activity
  • Carbonic anhydrase activity
  • 2.5.3. Yield and quality parameter
  • Extraction and estimation of essential oil
  • Essential oil yield per plant
  • Estimation of citral content
  • Citral yield per plant
  • 2.5.4. Statistical analysis
  • 3. Results
  • 3.1. Infra-red spectroscopy of irradiated sodium alginate fractions
  • 3.2. Quantification of growth characteristics of lemongrass as influenced by different ISA fractions
  • 3.3. Quantification of various physiological and biochemical parameters of lemongrass under the influence of different fr ...
  • 3.4. Response of yield and quality parameters of lemongrass to different fractions of ISA
  • 4. Discussion
  • 5. Conclusion
  • Funding
  • Acknowledgment.