Cargando…

Semiconducting silicon nanowires for biomedical applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Coffer, Jeffery (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Duxford, United Kingdom : Woodhead Publishing, [2022]
Edición:Second edition.
Colección:Woodhead Publishing series in biomaterials.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front cover
  • Half title
  • Full title
  • Copyright
  • Contents
  • Contributors
  • About the Editor
  • Foreword
  • Chapter One
  • An overview of semiconducting silicon nanowires for biomedical applications
  • 1.1 I ntroduction
  • 1.2 Historical origins
  • 1.3 The structure of this book
  • 1.4 Final comments
  • References
  • Chapter Two
  • Growth and characterization of silicon nanowires for biomedical applications
  • 2.1 Introduction
  • 2.2 Synthesis methods
  • 2.2.1 Chemical etching of silicon wafers
  • 2.2.2 Chemical vapor deposition for silicon nanowire growth
  • 2.2.2.1 Growth of intrinsic (undoped) silicon nanowires
  • 2.2.2.2 Growth of p-type or n-type silicon nanowires
  • 2.2.2.3 Growth of millimeter-long silicon nanowires
  • 2.2.2.4 Growth of axial silicon nanowire heterostructures
  • 2.2.2.5 Growth of radial Si NW heterostructures
  • 2.2.2.6 Growth of kinked or zigzag Si NWs
  • 2.2.2.7 Growth of branched silicon nanowires
  • 2.2.3 Solution-liquid-solid growth of silicon nanowires
  • 2.3 Characterization methods
  • 2.3.1 Electron microscopy techniques
  • 2.3.2 Raman spectroscopy
  • 2.3.3 Electrical transport measurement
  • 2.4 Example: Synthesis of semiconductor Si NWs by the CVD method
  • 2.5 Conclusion
  • Future trends
  • References
  • Chapter Three
  • Surface modification of silicon nanowires for biosensing
  • 3 .1 Introduction
  • 3 .2 Fabrication of silicon nanowires
  • 3 .3 Chemical activation/passivation of silicon nanowires
  • 3.3.1 Modification of native oxide SiO x /SiNWs
  • 3.3.2 Modification of hydrogen-terminated silicon nanowires
  • 3 .4 Modification of native oxide layer
  • 3.4.1 Silanization reaction
  • 3.4.1.1 Control of wetting properties by introduction of alkyl or �perfluoroalkyl chains on silicon nanowires
  • 3.4.1.2 Amine-terminated silicon nanowires ( Fig. 3.2 ).
  • 3.4.1.3 Thiol-terminated silicon nanowires ( Figs. 3.2
  • 3.3 )
  • 3.4.1.4 Epoxy-terminated silicon nanowires
  • 3.4.1.5 Aldehyde-terminated silicon nanowires
  • 3.4.1.6 Vinyl-terminated silicon nanowires
  • 3.4.1.7 Modification with carboxylic acid/organosilane reagents
  • 3.4.2 Post-functionalization
  • 3.4.3 Heterobifunctional cross-linkers
  • 3.4.4 Reaction with organophosphates ( Figs. 3.2
  • 3.7 )
  • 3. 5 Modification of hydrogen-terminated silicon nanowires
  • 3.5.1 Hydrosilylation reaction
  • 3.5.2 Deprotection
  • 3.5.3 Post-modification/cross-linking
  • 3.5.4 Halogenation/alkylation followed by Grignard reaction
  • 3.5.5 Electrografting on hydrogen-terminated silicon nanowires
  • 3.5.6 Arylation via aryldiazonium salt
  • 3 .6 Site-specific immobilization strategy of biomolecules on silicon nanowires
  • 3.6.1 Native chemical ligation
  • 3.6.2 "Click" chemistry
  • 3 .7 Control of non-specific interactions
  • 3. 8 Photochemistry
  • 3 .9 Inorganic functionalization
  • 3 .10 Conclusion
  • References
  • Chapter Four
  • Biocompatibility of semiconducting silicon nanowires
  • 4 .1 Introduction
  • 4 .2 In vitro biocompatibility of silicon nanowires
  • 4.2.1 Cytotoxicity
  • 4.2.2 Osseointegration
  • 4.2.3 Hemocompatibility
  • 4. 3 In vivo biocompatibility of silicon nanowires
  • 4. 4 Methodology issues
  • 4.4.1 Improper material characterization
  • 4.4.2 Modus operandi issues
  • 4. 5 Future trends
  • 4.5.1 Lack of data about the biocorona
  • 4.5.2 Genotoxicity profiling
  • 4.5.3 Potential production of reactive oxygen species
  • 4. 6 Conclusion
  • References
  • Chapter Five
  • Functional silicon nanowires for cellular binding and internalization
  • 5. 1 Developing a nano biomodel system for rational design in nanomedicine.
  • 5 .2 Non-linear optical characterization and surface functionalization of silicon nanowires
  • 5.2.1 Nonilinear optical imaging of silicon nanowires
  • 5.2.2 Functionalization of silicon nanowires
  • 5 .3 Applications: In vivo imaging and in vitro cellular interaction of functional Si NWs
  • 5.3.1 Intravital imaging of silicon nanowires circulating in blood vessels
  • 5.3.2 In vitro cellular response to silicon nanowires
  • 5 .4 Understanding internalization pathways for silicon nanowires
  • 5 .5 Conclusions and future trends
  • References
  • Chapter Six
  • Functional semiconducting silicon nanowires and their composites as tissue scaffolds
  • 6.1 Introduction
  • 6.2 NW surface etching processes to induce biomineralization
  • 6.3 NW surface functionalization strategies to induce biomineralization
  • 6.3.1 Electrochemically assisted surface functionalization
  • 6.3.2 Covalent surface functionalization of Si NWs for osteocompatibility
  • 6.4 Construction of Si NW
  • polymer scaffolds: mimicking trabecular bone
  • 6.4.1 Si NW transfer onto highly porous polymer surfaces
  • 6.4.2 Uniform NW transfer onto porous polymer surfaces with horizontally-oriented NWs
  • 6.4.3 Vertical Si NW arrays on patterned polymer substrates
  • 6.5 The role of Si NW orientation on cellular attachment, proliferation, and differentiation in the nanocomposite
  • 6.5.1 Cell attachment assays with MSCs
  • 6.6 Viability assays of MSCs on Si NW/PCL composites
  • 6.7 Differentiation of MSC on Si NW/PCL composites
  • 6.8 Recent advances in neural-based tissue engineering
  • 6.9 Conclusions and prospects for the future
  • Acknowledgement
  • References
  • Chapter Seven
  • Mediated differentiation of stem cells by engineered silicon nanowires
  • 7.1 Introduction
  • 7.2 Methods for silicon nanowire fabrication/ in vitro experiments.
  • 7.2.1 Electroless metal deposition method
  • 7.2.2 Biological cell culture process
  • 7.2.2.1 Isolation of human bone marrow-derived mesenchymal stem cells
  • 7.2.2.2 Cellular viability
  • 7.2.2.3 Gene expression and immunofluorescence staining
  • 7.2.2.4 Cell fixation process
  • 7.2.3 Material characterization
  • 7.3 Regulated differentiation for human mesenchymal stem cells
  • 7.4 Silicon nanowires fabricated by an electroless metal deposition method and their controllable spring constants
  • 7.5 M ediated differentiation of stem cells by engineered silicon nanowires
  • 7.6 C onclusions and future trends
  • Acknowledgements
  • References
  • Chapter Eight
  • Nanoneedle devices for biomedicine
  • 8.1 Introduction
  • 8.2 Drug delivery
  • 8.2.1 NN-mediated delivery strategies
  • 8.3 NN interface with cell membrane
  • 8.4 Bioelectronics
  • 8.5 Sensing, spectroscopy, and trapping
  • 8.6 Conclusion
  • References
  • Chapter Nine
  • Therapeutic platforms based on silicon nanotubes
  • 9.1 Introduction
  • 9.2 Computational studies of single-walled silicon nanotubes
  • 9.3 Fabrication and characterization of silicon nanotubes
  • 9.4 Chemical modification strategies of Si NT surfaces with implications in therapeutics
  • 9.5 Biodegradation properties of silicon nanotubes
  • 9.6 Biocompatibility of silicon nanotubes
  • 9.7 Nanotube interior filling with superparamagnetic nanoparticles for potential magnetic field-assisted drug delivery
  • 9.8 Formation of a nanohybrid composed of Si NTs and metal nanoparticles with relevant anticancer properties
  • 9.9 Conclusions
  • Acknowledgement
  • References
  • Chapter Ten
  • Cellular nanotechnologies: Orchestrating cellular processes by engineering silicon nanowires architectures
  • 10.1 Introduction
  • 10.2 Engineering of tunable vertically aligned nanostructure arrays.
  • 10.3 Surface functionalization of Si NW arrays for intracellular delivery applications
  • 10.4 The influence of Si NW array geometries on fundamental cell behavior
  • 10.5 Vertically aligned nanostructure mediated intracellular signaling
  • 10.5.1 Plasma membrane curvature-mediated intracellular signaling
  • 10.5.2 Nuclear membrane curvature-mediated intracellular signaling
  • 10.5.3 The effect of nanostructure on Rho-family GTPase signaling
  • 10.5.4 The effect of nanostructure tip diameter on gene expression
  • 10.6 Vertically aligned nanostructure mediated intracellular delivery
  • 10.6.1 Silicon nanowire-mediated intracellular delivery in vitro
  • 10.6.2 Silicon nanowire-mediated intracellular delivery in vivo
  • 10.6.3 Underlying mechanism of vertically aligned nanostructure mediated intracellular delivery
  • 10.7 Vertically aligned nanostructure mediated electroporation
  • 10.7.1 Intracellular delivery
  • 10.7.2 Intracellular recording
  • 10.8 Conclusion
  • References
  • Chapter Eleven
  • Nanowire array fabrication for high throughput screening in the biosciences
  • 11.1 In troduction
  • 11.2 Fa brication methods
  • 11.2.1 Fabrication of silicon nanowire field-effect transistors for HTS in biosciences
  • 11.2.2 Fabrication of silicon nanowire field effect transistors via "top-down" methods
  • 11.2.2.1 Fabrication of silicon nanowire field effect transistors via "bottom-up" methods
  • 11.2.2.2 Fabrication of Si NW FET arrays via superlattice nanowire pattern transfer "SNAP" method
  • 11.2.3 Surface modification of Si NW FETs for HTS in the biosciences
  • 11.2.4 Integration of Si NW FETs with microfluidic devices for HTS in real time measurements
  • 11.3 Examples/applications
  • 11.3.1 DNA hybridization
  • 11.3.2 Detection of multiple viruses and small molecules-proteins interactions.