|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1269212387 |
003 |
OCoLC |
005 |
20231120010606.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
210927s2022 enka ob 001 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d OCLCO
|d OCLCF
|d YDX
|d YDXIT
|d OCLCO
|d OCLCQ
|d SFB
|d K6U
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1268325420
|a 1287276663
|a 1287869709
|
020 |
|
|
|a 9780323851312
|q (electronic book)
|
020 |
|
|
|a 0323851312
|q (electronic book)
|
020 |
|
|
|z 9780128213513
|
020 |
|
|
|z 0128213515
|
035 |
|
|
|a (OCoLC)1269212387
|z (OCoLC)1268325420
|z (OCoLC)1287276663
|z (OCoLC)1287869709
|
050 |
|
4 |
|a R857.N34
|
082 |
0 |
4 |
|a 610.28
|2 23
|
245 |
0 |
0 |
|a Semiconducting silicon nanowires for biomedical applications /
|c edited by Jeffery L. Coffer.
|
250 |
|
|
|a Second edition.
|
264 |
|
1 |
|a Duxford, United Kingdom :
|b Woodhead Publishing,
|c [2022]
|
300 |
|
|
|a 1 online resource (1 volume) :
|b illustrations (black and white, and color)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Woodhead Publishing series in biomaterials
|
500 |
|
|
|a Previous edition: 2014.
|
500 |
|
|
|a Includes index.
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Front cover -- Half title -- Full title -- Copyright -- Contents -- Contributors -- About the Editor -- Foreword -- Chapter One -- An overview of semiconducting silicon nanowires for biomedical applications -- 1.1 I ntroduction -- 1.2 Historical origins -- 1.3 The structure of this book -- 1.4 Final comments -- References -- Chapter Two -- Growth and characterization of silicon nanowires for biomedical applications -- 2.1 Introduction -- 2.2 Synthesis methods -- 2.2.1 Chemical etching of silicon wafers -- 2.2.2 Chemical vapor deposition for silicon nanowire growth -- 2.2.2.1 Growth of intrinsic (undoped) silicon nanowires -- 2.2.2.2 Growth of p-type or n-type silicon nanowires -- 2.2.2.3 Growth of millimeter-long silicon nanowires -- 2.2.2.4 Growth of axial silicon nanowire heterostructures -- 2.2.2.5 Growth of radial Si NW heterostructures -- 2.2.2.6 Growth of kinked or zigzag Si NWs -- 2.2.2.7 Growth of branched silicon nanowires -- 2.2.3 Solution-liquid-solid growth of silicon nanowires -- 2.3 Characterization methods -- 2.3.1 Electron microscopy techniques -- 2.3.2 Raman spectroscopy -- 2.3.3 Electrical transport measurement -- 2.4 Example: Synthesis of semiconductor Si NWs by the CVD method -- 2.5 Conclusion -- Future trends -- References -- Chapter Three -- Surface modification of silicon nanowires for biosensing -- 3 .1 Introduction -- 3 .2 Fabrication of silicon nanowires -- 3 .3 Chemical activation/passivation of silicon nanowires -- 3.3.1 Modification of native oxide SiO x /SiNWs -- 3.3.2 Modification of hydrogen-terminated silicon nanowires -- 3 .4 Modification of native oxide layer -- 3.4.1 Silanization reaction -- 3.4.1.1 Control of wetting properties by introduction of alkyl or �perfluoroalkyl chains on silicon nanowires -- 3.4.1.2 Amine-terminated silicon nanowires ( Fig. 3.2 ).
|
505 |
8 |
|
|a 3.4.1.3 Thiol-terminated silicon nanowires ( Figs. 3.2 -- 3.3 ) -- 3.4.1.4 Epoxy-terminated silicon nanowires -- 3.4.1.5 Aldehyde-terminated silicon nanowires -- 3.4.1.6 Vinyl-terminated silicon nanowires -- 3.4.1.7 Modification with carboxylic acid/organosilane reagents -- 3.4.2 Post-functionalization -- 3.4.3 Heterobifunctional cross-linkers -- 3.4.4 Reaction with organophosphates ( Figs. 3.2 -- 3.7 ) -- 3. 5 Modification of hydrogen-terminated silicon nanowires -- 3.5.1 Hydrosilylation reaction -- 3.5.2 Deprotection -- 3.5.3 Post-modification/cross-linking -- 3.5.4 Halogenation/alkylation followed by Grignard reaction -- 3.5.5 Electrografting on hydrogen-terminated silicon nanowires -- 3.5.6 Arylation via aryldiazonium salt -- 3 .6 Site-specific immobilization strategy of biomolecules on silicon nanowires -- 3.6.1 Native chemical ligation -- 3.6.2 "Click" chemistry -- 3 .7 Control of non-specific interactions -- 3. 8 Photochemistry -- 3 .9 Inorganic functionalization -- 3 .10 Conclusion -- References -- Chapter Four -- Biocompatibility of semiconducting silicon nanowires -- 4 .1 Introduction -- 4 .2 In vitro biocompatibility of silicon nanowires -- 4.2.1 Cytotoxicity -- 4.2.2 Osseointegration -- 4.2.3 Hemocompatibility -- 4. 3 In vivo biocompatibility of silicon nanowires -- 4. 4 Methodology issues -- 4.4.1 Improper material characterization -- 4.4.2 Modus operandi issues -- 4. 5 Future trends -- 4.5.1 Lack of data about the biocorona -- 4.5.2 Genotoxicity profiling -- 4.5.3 Potential production of reactive oxygen species -- 4. 6 Conclusion -- References -- Chapter Five -- Functional silicon nanowires for cellular binding and internalization -- 5. 1 Developing a nano biomodel system for rational design in nanomedicine.
|
505 |
8 |
|
|a 5 .2 Non-linear optical characterization and surface functionalization of silicon nanowires -- 5.2.1 Nonilinear optical imaging of silicon nanowires -- 5.2.2 Functionalization of silicon nanowires -- 5 .3 Applications: In vivo imaging and in vitro cellular interaction of functional Si NWs -- 5.3.1 Intravital imaging of silicon nanowires circulating in blood vessels -- 5.3.2 In vitro cellular response to silicon nanowires -- 5 .4 Understanding internalization pathways for silicon nanowires -- 5 .5 Conclusions and future trends -- References -- Chapter Six -- Functional semiconducting silicon nanowires and their composites as tissue scaffolds -- 6.1 Introduction -- 6.2 NW surface etching processes to induce biomineralization -- 6.3 NW surface functionalization strategies to induce biomineralization -- 6.3.1 Electrochemically assisted surface functionalization -- 6.3.2 Covalent surface functionalization of Si NWs for osteocompatibility -- 6.4 Construction of Si NW -- polymer scaffolds: mimicking trabecular bone -- 6.4.1 Si NW transfer onto highly porous polymer surfaces -- 6.4.2 Uniform NW transfer onto porous polymer surfaces with horizontally-oriented NWs -- 6.4.3 Vertical Si NW arrays on patterned polymer substrates -- 6.5 The role of Si NW orientation on cellular attachment, proliferation, and differentiation in the nanocomposite -- 6.5.1 Cell attachment assays with MSCs -- 6.6 Viability assays of MSCs on Si NW/PCL composites -- 6.7 Differentiation of MSC on Si NW/PCL composites -- 6.8 Recent advances in neural-based tissue engineering -- 6.9 Conclusions and prospects for the future -- Acknowledgement -- References -- Chapter Seven -- Mediated differentiation of stem cells by engineered silicon nanowires -- 7.1 Introduction -- 7.2 Methods for silicon nanowire fabrication/ in vitro experiments.
|
505 |
8 |
|
|a 7.2.1 Electroless metal deposition method -- 7.2.2 Biological cell culture process -- 7.2.2.1 Isolation of human bone marrow-derived mesenchymal stem cells -- 7.2.2.2 Cellular viability -- 7.2.2.3 Gene expression and immunofluorescence staining -- 7.2.2.4 Cell fixation process -- 7.2.3 Material characterization -- 7.3 Regulated differentiation for human mesenchymal stem cells -- 7.4 Silicon nanowires fabricated by an electroless metal deposition method and their controllable spring constants -- 7.5 M ediated differentiation of stem cells by engineered silicon nanowires -- 7.6 C onclusions and future trends -- Acknowledgements -- References -- Chapter Eight -- Nanoneedle devices for biomedicine -- 8.1 Introduction -- 8.2 Drug delivery -- 8.2.1 NN-mediated delivery strategies -- 8.3 NN interface with cell membrane -- 8.4 Bioelectronics -- 8.5 Sensing, spectroscopy, and trapping -- 8.6 Conclusion -- References -- Chapter Nine -- Therapeutic platforms based on silicon nanotubes -- 9.1 Introduction -- 9.2 Computational studies of single-walled silicon nanotubes -- 9.3 Fabrication and characterization of silicon nanotubes -- 9.4 Chemical modification strategies of Si NT surfaces with implications in therapeutics -- 9.5 Biodegradation properties of silicon nanotubes -- 9.6 Biocompatibility of silicon nanotubes -- 9.7 Nanotube interior filling with superparamagnetic nanoparticles for potential magnetic field-assisted drug delivery -- 9.8 Formation of a nanohybrid composed of Si NTs and metal nanoparticles with relevant anticancer properties -- 9.9 Conclusions -- Acknowledgement -- References -- Chapter Ten -- Cellular nanotechnologies: Orchestrating cellular processes by engineering silicon nanowires architectures -- 10.1 Introduction -- 10.2 Engineering of tunable vertically aligned nanostructure arrays.
|
505 |
8 |
|
|a 10.3 Surface functionalization of Si NW arrays for intracellular delivery applications -- 10.4 The influence of Si NW array geometries on fundamental cell behavior -- 10.5 Vertically aligned nanostructure mediated intracellular signaling -- 10.5.1 Plasma membrane curvature-mediated intracellular signaling -- 10.5.2 Nuclear membrane curvature-mediated intracellular signaling -- 10.5.3 The effect of nanostructure on Rho-family GTPase signaling -- 10.5.4 The effect of nanostructure tip diameter on gene expression -- 10.6 Vertically aligned nanostructure mediated intracellular delivery -- 10.6.1 Silicon nanowire-mediated intracellular delivery in vitro -- 10.6.2 Silicon nanowire-mediated intracellular delivery in vivo -- 10.6.3 Underlying mechanism of vertically aligned nanostructure mediated intracellular delivery -- 10.7 Vertically aligned nanostructure mediated electroporation -- 10.7.1 Intracellular delivery -- 10.7.2 Intracellular recording -- 10.8 Conclusion -- References -- Chapter Eleven -- Nanowire array fabrication for high throughput screening in the biosciences -- 11.1 In troduction -- 11.2 Fa brication methods -- 11.2.1 Fabrication of silicon nanowire field-effect transistors for HTS in biosciences -- 11.2.2 Fabrication of silicon nanowire field effect transistors via "top-down" methods -- 11.2.2.1 Fabrication of silicon nanowire field effect transistors via "bottom-up" methods -- 11.2.2.2 Fabrication of Si NW FET arrays via superlattice nanowire pattern transfer "SNAP" method -- 11.2.3 Surface modification of Si NW FETs for HTS in the biosciences -- 11.2.4 Integration of Si NW FETs with microfluidic devices for HTS in real time measurements -- 11.3 Examples/applications -- 11.3.1 DNA hybridization -- 11.3.2 Detection of multiple viruses and small molecules-proteins interactions.
|
650 |
|
0 |
|a Biomedical materials.
|
650 |
|
0 |
|a Nanosilicon.
|
650 |
|
0 |
|a Nanowires.
|
650 |
|
2 |
|a Nanowires
|0 (DNLM)D053770
|
650 |
|
6 |
|a Biomat�eriaux.
|0 (CaQQLa)201-0025723
|
650 |
|
6 |
|a Nanosilicium.
|0 (CaQQLa)000265521
|
650 |
|
6 |
|a Nanofils.
|0 (CaQQLa)201-0331579
|
650 |
|
7 |
|a Biomedical materials
|2 fast
|0 (OCoLC)fst00832586
|
650 |
|
7 |
|a Nanosilicon
|2 fast
|0 (OCoLC)fst01744914
|
650 |
|
7 |
|a Nanowires
|2 fast
|0 (OCoLC)fst01032641
|
700 |
1 |
|
|a Coffer, Jeffery,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Semiconducting silicon nanowires for biomedical applications.
|b Second edition.
|d Oxford : Woodhead Publishing, 2021
|z 9780128213513
|w (OCoLC)1263797212
|
830 |
|
0 |
|a Woodhead Publishing series in biomaterials.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128213513
|z Texto completo
|