Cargando…

Contactless vital signs monitoring /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Wang, Wenjin, Wang, Xuyu
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, 2022.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Contactless Vital Signs Monitoring
  • Copyright
  • Contents
  • List of contributors
  • Foreword
  • Preface
  • 1 Human physiology and contactless vital signs monitoring using camera and wireless signals
  • 1.1 Contactless vital signs monitoring with cameras and wireless
  • 1.2 Camera-based vital signs monitoring
  • 1.3 Current techniques of camera-based vital signs monitoring
  • 1.3.1 Camera-based pulse monitoring
  • 1.3.2 Cardiac-related physiological signals using camera-based methods
  • 1.3.2.1 Heart rate
  • 1.3.2.2 Blood oxygen saturation
  • 1.3.2.3 Blood pressure
  • 1.3.3 Camera-based respiration monitoring
  • 1.3.4 Camera-based body temperature monitoring
  • 1.4 Applications of camera-based vital signs monitoring
  • 1.4.1 Clinical applications
  • 1.4.2 Free-living applications
  • 1.5 Wireless-based vital signs monitoring
  • 1.6 Current techniques of wireless-based vital signs monitoring
  • 1.6.1 Radar-based vital signs monitoring
  • 1.6.2 RSS-based vital signs monitoring
  • 1.6.3 CSI-based vital signs monitoring
  • 1.6.4 RFID-based vital signs monitoring
  • 1.6.5 Acoustic-based vital signs monitoring
  • 1.7 Conclusions
  • Acknowledgments
  • References
  • Part I Camera-based vital signs monitoring
  • 2 Physiological origin of camera-based PPG imaging
  • 2.1 Introduction
  • 2.2 Conventional PPG model: blood volume modulation
  • 2.3 How to explain the largest modulation of the green light?
  • 2.4 Alternative PPG model: tissue compression modulation
  • 2.5 Boundary conditions and influence of skin contact
  • 2.6 Pulsatile dermis compression and modulation of IR light
  • 2.7 Light modulation in a single capillary
  • 2.8 Irregularity of RBC motion
  • 2.9 Occlusion plethysmography
  • 2.10 Peculiarities of light interaction with cerebral vessels
  • 2.11 APC as a measure of the arterial tone.
  • 2.12 Green-light camera-based PPG and cutaneous perfusion
  • 2.13 Conclusive remarks
  • Acknowledgments
  • References
  • 3 Model-based camera-PPG
  • 3.1 Introduction
  • 3.2 Model-based pulse rate extraction
  • 3.3 Fitness application
  • 3.3.1 Experimental setup
  • 3.3.2 Processing chain
  • 3.3.3 Performance metric
  • 3.4 Results
  • 3.4.1 Reference creation
  • 3.4.2 System performance
  • 3.5 Discussion
  • 3.6 Conclusions
  • 3.A PBV determination
  • 3.A.1 Optical path descriptors
  • 3.A.2 Experimental PBV determination
  • 3.B Pseudocode for model-based PPG
  • References
  • 4 Camera-based respiration monitoring
  • 4.1 Introduction
  • 4.2 Setup and measurements
  • 4.2.1 Camera setup in the MR system
  • 4.2.2 Data collection and preparation
  • 4.3 Methods
  • 4.3.1 PPG-based
  • 4.3.2 Motion-based: optical flow
  • 4.3.3 Motion-based: profile correlation
  • 4.3.4 Respiratory signal and rate
  • 4.4 Results and discussion
  • 4.5 Conclusions
  • References
  • 5 Camera-based blood oxygen measurement
  • 5.1 Introduction
  • 5.2 Principle
  • 5.3 Application: monitoring blood oxygen saturation in human skin
  • 5.4 Application: monitoring blood oxygen saturation in skin during changes in fraction of inspired oxygen
  • 5.5 Application: monitoring blood oxygen saturation in brain
  • 5.6 Application: monitoring blood oxygen saturation in hepatic ischemia-reperfusion
  • References
  • 6 Camera-based blood pressure monitoring
  • 6.1 Advantages over other potential cuff-less BP measurement devices
  • 6.2 Theoretical principles
  • 6.2.1 Contactless acquisition of arterial waveforms
  • 6.2.2 Extraction of waveform features that correlate with BP
  • 6.2.3 Calibration of features to BP using cuff BP measurements
  • 6.3 Summary of previous experimental studies
  • 6.3.1 Key camera-based BP monitoring investigations
  • 6.3.2 Relevant contact-sensor BP monitoring investigations.
  • 6.4 Conclusions
  • 6.4.1 Summary
  • 6.4.2 Future research directions
  • 6.4.3 Outlook
  • Acknowledgments
  • References
  • 7 Clinical applications for imaging photoplethysmography
  • 7.1 Overview
  • 7.2 Patient monitoring and risk assessment
  • 7.2.1 Current monitoring-target groups and technology
  • 7.2.2 Patient monitoring by iPPG-measures of relevance
  • 7.2.3 Patient monitoring by iPPG-realistic usage scenarios
  • 7.3 Application beyond patient monitoring
  • 7.3.1 Sleep medicine
  • 7.3.2 Local perfusion analysis
  • 7.3.3 Skin microcirculation as diagnostic proxy
  • 7.3.4 Further applications
  • 7.4 Summary and outlook
  • Acknowledgments
  • References
  • 8 Applications of camera-based physiological measurement beyond healthcare
  • 8.1 The evolution from the lab to the real world
  • 8.2 The promise for ubiquitous computing
  • 8.2.1 Fitness and wellness
  • 8.2.2 Affective computing
  • 8.2.3 Biometric recognition and liveness detection
  • 8.2.4 Avatars, remote communication, and mixed reality
  • 8.3 Challenges
  • 8.4 Ethics and privacy implications
  • 8.5 Regulation
  • 8.6 Summary
  • References
  • Part II Wireless sensor-based vital signs monitoring
  • 9 Radar-based vital signs monitoring
  • 9.1 Introduction
  • 9.2 Vital signs monitoring through continuous-wave radar
  • 9.2.1 Theory
  • 9.2.1.1 Basic theory
  • 9.2.1.2 Phase demodulation algorithm
  • 9.2.1.3 Advancements in CW radar
  • 9.2.2 Vital signs monitoring
  • 9.2.2.1 Cardiopulmonary monitoring
  • 9.2.2.2 Cancer medical application
  • 9.3 Vital signs monitoring using FMCW radar
  • 9.3.1 Composition of an FMCW radar system
  • 9.3.2 Analysis of an FMCW radar IF signal
  • 9.3.3 FMCW radar parameter estimation
  • 9.3.3.1 FMCW radar range estimation
  • 9.3.3.2 FMCW radar velocity estimation
  • 9.3.3.3 FMCW radar angle estimation.
  • 9.3.3.4 FMCW radar phase-based range-tracking algorithm for vital signs monitoring
  • 9.3.4 Examples of FMCW radar on contactless vital signs monitoring
  • 9.3.4.1 Respiration monitoring
  • 9.3.4.2 Indoor human tracking
  • 9.3.4.3 Hybrid radar systems for human tracking and identification
  • 9.3.4.4 Other types of FMCW radar vital signs detection applications
  • 9.4 Conclusion
  • References
  • 10 Received power-based vital signs monitoring
  • 10.1 Introduction
  • 10.2 Related work
  • 10.2.1 Radar approaches
  • 10.2.2 Repurposing wireless transceivers
  • 10.3 Received power-based vital signs monitoring
  • 10.3.1 Received power model
  • 10.3.2 Estimating rates from received power
  • 10.4 Implementation
  • 10.4.1 Hardware
  • 10.4.2 Software
  • 10.4.3 Experimental setup
  • 10.5 Experimental results
  • 10.5.1 Breathing-rate accuracy
  • 10.5.1.1 Respiration-rate estimation with controlled breathing
  • 10.5.1.2 Respiration-rate estimation with short-term uncontrolled breathing
  • 10.5.1.3 Respiration-rate estimation with long-term uncontrolled breathing
  • 10.5.2 Pulse-rate accuracy
  • 10.6 Conclusion
  • References
  • 11 WiFi CSI-based vital signs monitoring
  • 11.1 Introduction
  • 11.2 An historic review of WiFi-based human respiration monitoring
  • 11.2.1 RSS-based respiration monitoring
  • 11.2.2 CSI-based respiration monitoring
  • 11.3 The principle of WiFi CSI-based respiration monitoring
  • 11.3.1 The basics of WiFi CSI
  • 11.3.2 Modeling human respiration
  • 11.3.3 Fresnel diffraction and reflection sensing models
  • 11.4 Robust single-person respiration monitoring
  • 11.4.1 Removing ``blind spots'' for respiration monitoring
  • 11.4.1.1 Exploiting complementarity of CSI amplitude and phase
  • 11.4.1.2 Adding `a `virtual'' multipath
  • 11.4.2 Pushing the sensing range of respiration monitoring
  • 11.4.2.1 The CSI-ratio model.
  • 11.4.2.2 Applying CSI ratio to single-person respiration sensing
  • 11.4.2.3 Evaluation
  • 11.5 Robust multi-person respiration monitoring
  • 11.5.1 Modeling of CSI-based multi-person respiration sensing
  • 11.5.1.1 Effects of multi-person respiration on WiFi CSI
  • 11.5.1.2 Modeling multi-person respiration sensing as a blind-source separation problem
  • 11.5.2 The advantages of our approach
  • 11.5.2.1 Reducing the noise in CSI amplitude
  • 11.5.2.2 Eliminating the ``blind spots''
  • 11.5.2.3 Resolving similar respiration rates
  • 11.5.3 Evaluation
  • 11.5.3.1 Experimental setup
  • 11.5.3.2 Experiment results
  • 11.6 Summary
  • Acknowledgments
  • References
  • 12 RFID-based vital signs monitoring
  • 12.1 Introduction
  • 12.2 Background
  • 12.2.1 Literature review
  • 12.2.1.1 RFID sensing
  • 12.2.1.2 Wireless-based vital signs monitoring
  • 12.2.1.3 RFID-based vital signs monitoring
  • 12.2.1.4 Respiration monitoring system
  • 12.2.2 RFID physical-layer measurement
  • 12.3 Respiration monitoring using RFID systems
  • 12.3.1 System overview
  • 12.3.2 Low-level data characterization
  • 12.3.3 Breath signal extraction
  • 12.3.4 Enhance monitoring with sensor fusion of multiple tags
  • 12.3.5 Discussion
  • 12.4 Implementation and evaluation
  • 12.4.1 Implementation
  • 12.4.2 Experiment setting
  • 12.4.3 Experiment results
  • 12.5 Conclusion
  • References
  • 13 Acoustic-based vital signs monitoring
  • 13.1 Introduction
  • 13.2 Related work
  • 13.3 Sonar phase analysis
  • 13.4 The SonarBeat system
  • 13.4.1 SonarBeat system architecture
  • 13.4.2 Signal generation
  • 13.4.3 Data extraction
  • 13.4.4 Received signal preprocessing
  • 13.4.4.1 I/Q demodulation
  • 13.4.4.2 Static vector effect reduction
  • 13.5 Experimental study
  • 13.5.1 Implementation and test configuration
  • 13.5.2 Performance of breathing-rate estimation.