RNA modification enzymes /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, MA :
Academic Press,
2021.
|
Colección: | Methods in enzymology ;
v. 658. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- RNA Modification Enzymes
- Copyright
- Contents
- Contributors
- Preface
- Chapter One: Locating chemical modifications in RNA sequences through ribonucleases and LC-MS based analysis
- 1. Introduction
- 2. Characterization of chemical modifications in RNA
- 2.1. Identity and census of resident modifications
- 2.2. Locating the chemical modification in the RNA sequence
- 3. Tools to characterize modified RNA sequence
- 3.1. Equipment (available through multiple vendors)
- 3.2. Chemicals
- 4. Protocols
- 4.1. RNA hydrolysis to nucleosides
- 4.2. LC-MS based identification of modifications
- 4.3. Oligonucleotide generation for location-specific information
- 4.3.1. Nucleobase-specific ribonucleases
- 4.3.2. Nucleoside-preferential ribonucleases (alternate approach)
- 4.3.3. Non-specific ribonucleases
- 4.4. LC-MS analysis for sequencing the oligonucleotides
- 4.5. Data analysis
- 5. Summary
- Acknowledgment
- References
- Chapter Two: Mapping of 7-methylguanosine (mC) RNA modifications by AlkAniline-Seq
- 1. Introduction
- 2. Chemical approaches for mapping of mC
- 2.1. Cleavage of N-glycosidic bond and/or detection of the reverse transcription arrest
- 2.2. Selective ligation to the 5-phosphate resulting from RNA abasic site
- 3. Overview of AlkAniline-Seq protocol
- 3.1. RNA fragmentation step
- 3.2. De-phosphorylation
- 3.3. Aniline cleavage
- 3.4. Adapter ligation and barcoding
- 3.5. Sequencing
- 3.6. Data analysis
- 4. Analysis of tRNA and rRNA in total RNA fraction
- 4.1. Equipment
- 4.2. Chemicals
- 4.3. Consumables and kits for library preparation and sequencing
- 4.4. Biological material
- 5. AlkAniline-Seq protocol
- 5.1. RNA fragmentation in bicarbonate buffer at 95C
- 5.2. De-phosphorylation by Antarctic phosphatase
- 5.3. Aniline cleavage.
- 5.4. Library preparation using NEBNext multiplex small RNA library prep set for Illumina
- 5.5. Purification of the library using GeneJET PCR purification kit
- 5.6. Library quantification and quality assessment
- 5.7. Sequencing of the library
- 5.8. Bioinformatic analysis
- 6. Data analysis and interpretation
- 7. Limitations
- 8. Summary
- Acknowledgments
- References
- Chapter Three: Facile detection of RNA phospho-methylation in cells and tissues
- 1. Introduction
- 1.1. Before you begin
- 1.1.1. Buffer preparation
- 1.1.2. Key resources table
- 1.2. Materials and equipment
- 1.2.1. Cell culture
- 1.2.1.1. Equipment
- 1.2.1.2. Reagents
- 1.2.2. Protein and RNA extraction
- 1.2.2.1. Equipment
- 1.2.2.2. Reagents
- 1.2.3. Antarctic phosphatase or terminator treatment
- 1.2.3.1. Equipment
- 1.2.3.2. Reagents
- 1.2.4. RNA cleanup
- 1.2.5. Northern blot
- 1.2.5.1. Equipment
- 1.2.5.2. Reagents
- 1.2.5.3. Alternatives
- 2. Protocol
- 2.1. Seeding cells
- 2.2. Preparing protein and RNA extracts from same cells with the Norgen RNA/Protein Plus kit (Product #48200)
- 2.3. AP-shift assay for tRNA
- 2.4. Terminator assay
- 2.5. RNA clean-up using the Qiagen RNeasy MinElute kit
- 2.6. Northern blotting
- 3. Expected outcomes
- 4. Quantification and statistical analysis
- 5. Advantages
- 6. Limitations
- 7. Optimization and troubleshooting
- 7.1. Problem
- 7.2. Potential solution to optimize the procedure
- 8. Safety considerations and standards
- 9. Alternative methods/procedures
- References
- Chapter Four: Quantitative probing of glycosylated queuosine modifications in tRNA
- 1. Introduction
- 2. Methods
- 2.1. Total RNA deacylation
- 2.2. Acid denaturing polyacrylamide gel electrophoresis
- 2.3. Nonradioactive Northern blot quantification
- 3. Notes
- Acknowledgments
- References.
- Chapter Five: CTS tag-based methods for investigating mitochondrial RNA modification factors in Trypanosoma brucei
- 1. Introduction
- 2. Protein affinity purification and in vivo proximity labeling
- 2.1. In situ CTS-tagging
- 2.2. Purification of protein and ribonucleoprotein complexes
- 2.2.1. Equipment
- 2.2.2. Buffers and reagents
- 2.2.3. Procedure
- 2.3. In vivo proximity biotinylation
- 2.3.1. Equipment
- 2.3.2. Buffers and reagents
- 2.3.3. Procedure
- 3. UV-crosslinking tandem affinity purification sequencing (CTAP-SEQ)
- 3.1. UV-crosslinking, purification and RNA-Seq library preparation
- 3.1.1. Equipment
- 3.1.2. Buffers and reagents
- 3.1.3. Procedure
- 3.2. CTAP-SEQ data analysis
- 3.2.1. Data pre-processing
- 3.2.1.1. Adaptor trimming
- 3.2.1.2. Handling unique molecular identifier (UMI)
- 3.2.1.3. Filtering out nuclear genome-encoded RNAs
- 3.2.2. Binding sites distribution along RNAs of interest
- 4. Immunofluorescence imaging of CTS-tagged proteins
- 4.1. Equipment
- 4.2. Reagents and buffers
- 4.3. Procedure
- 5. Summary
- Acknowledgments
- References
- Chapter Six: Analysis of the epitranscriptome with ion-pairing reagent free oligonucleotide mass spectrometry
- 1. Introduction
- 2. Materials
- 2.1. Cell culture
- 2.2. RNA isolation
- 2.3. RNA purification
- 2.4. PCR and in vitro transcription
- 2.5. AlkB in vitro assay
- 2.6. Primers, oligonucleotides and templates
- 2.7. Digestion
- 2.8. LC-MS
- 3. Methods
- 3.1. General workflow of an oligonucleotide (ON)-MS experiment
- 3.1.1. Considerations for biological samples (RNA substrates)
- 3.1.2. Considerations for RNA digestion
- 3.1.3. Considerations for mass spectrometry
- 3.2. RNA substrates
- 3.2.1. Cell culture
- 3.2.2. T7 in vitro transcribed RNA as substrate or internal standard
- 3.2.3. Synthetic oligonucleotides.
- 3.3. Processing of RNA
- 3.3.1. RNA isolation for native RNA
- 3.3.2. SEC separation for native tRNA and in vitro transcribed tRNA
- 3.3.3. RNA in vitro demethylation with AlkB
- 3.4. RNase T1 digest for ON-MS
- 3.5. Low- and high-resolution mass spectrometry
- 3.5.1. Low-resolution QQQ for oligonucleotide mass spectrometry
- 3.5.2. Comparison of chromatographic set-up for nucleoside-MS and ON-MS
- 3.5.3. High-resolution orbitrap for ON-MS
- 3.6. Data analysis
- 3.6.1. Agilent�s Qualsoftware
- 3.6.2. In silico tools and data analysis
- 4. Notes
- Acknowledgments
- References
- Chapter Seven: RNA immunoprecipitation to identify in vivo targets of RNA editing and modifying enzymes
- 1. Introduction
- 2. Factors to consider when designing a RIP assay
- 3. Step-by-step method details
- 3.1. Materials and equipment
- 4. Troubleshooting
- 5. Summary
- Acknowledgment
- Reference
- Chapter Eight: Chemoenzymatic labeling of RNA to enrich, detect and identify methyltransferase-target sites
- 1. Before you begin
- 2. Key resources table
- 3. Materials and equipment
- 3.1. Equipment
- 3.2. Materials
- 3.3. Reagents
- 3.3.1. Alternatives
- 4. Step-by-step method details
- 4.1. Recombinant expression and purification of METTL3-METTL14
- 4.1.1. Generation of recombinant bacmids in E. coli DH10Bac cells
- 4.1.2. Cultivation and transfection of Sf21 insect cells
- 4.1.3. Preparation of V1 baculovirus stock
- 4.1.4. SDS-PAGE analysis
- 4.1.5. Small-scale expression test
- 4.1.6. Large-scale expression
- 4.1.7. Purification of METTL3-METTL14
- 4.2. Synthesis of 5-[(R/S)-[(3S)-3-amino-3-carboxy-propyl]prop-2-yn-1-ylselenio]-5-deoxyadenosine (SeAdoYn)
- 4.2.1. In vitro MTase assay
- 4.3. Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC)
- 4.3.1. Cleanup via microspin G-25 columns
- 4.3.2. Enrichment via magnetic beads.
- 4.3.3. Detection via primer extension assay
- 4.4. PAGE
- 5. Expected outcomes
- 6. Quantification and data analysis
- 7. Advantages
- 8. Limitations
- 9. Optimization and troubleshooting
- 9.1. Problematic step: Generation of recombinant bacmids in E. coli DH10Bac cells
- 9.2. Problematic step: Synthesis of SeAdoYn
- 9.3. Problematic step: CuAAC
- 10. Safety considerations and standards
- 11. Alternative methods/procedures
- 11.1. Metabolic labeling
- 11.2. Extraction of total RNA from HeLa cells
- 11.3. Detection via fluorescence
- 11.4. End-point kinetics measurements
- Acknowledgments
- References
- Chapter Nine: Analysis of codon-specific translation by ribosome profiling
- 1. Introduction
- 2. Before you begin
- 2.1. Key resources table
- 2.2. Abbreviations
- 3. Step-by-step method details
- 3.1. Sample harvesting and RNase I digestion
- 3.1.1. HEK293T cells: Cell harvesting and extract preparation (Video 1)
- 3.1.2. HEK293T cells: RNA digestion
- 3.1.3. Yeast: Cell harvesting (Video 2)
- 3.1.4. Yeast: cell lysis (Video 3)
- 3.1.5. Yeast: Cell extract preparation and RNA digestion (Video 4)
- 3.2. Gradient ultracentrifugation and fractionation (Video 5)
- 3.3. RNA isolation from monosome fraction (Video 6)
- 3.4. Size selection of ribosome-protected fragments (RPF) by gel electrophoresis (Video 7)
- 3.5. Dephosphorylation (Video 8)
- 3.6. Adapter ligation
- 3.7. Reverse transcription (Video 9)
- 3.8. cDNA circularization (Video 10)
- 3.9. Test PCR (Video 11)
- 3.10. Library PCR
- 4. Expected outcomes
- 5. Quantification and statistical analysis
- 5.1. Data processing and quality control
- 5.2. Differential translation analysis
- 6. Advantages
- 7. Limitations
- 8. Optimization and troubleshooting
- 9. Safety considerations and standards
- 10. Alternative methods/procedures
- References.