Heterogeneous catalysis in sustainable synthesis
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
Elsevier,
[2022]
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Heterogeneous Catalysis in Sustainable Synthesis
- Copyright
- Contents
- Preface
- Chapter 1 Heterogeneous catalysis for organic synthesis: Historical background and fundamentals
- 1.1 Introduction and historical background
- 1.2 Catalysis
- 1.2.1 Fundamentals and basic definitions
- 1.2.1.1 Catalyst and catalytic cycle
- 1.2.1.2 Activation energy
- 1.2.1.3 Other definitions
- 1.2.2 Heterogeneous catalysis
- 1.2.2.1 Catalytic surfaces
- 1.2.2.2 Physical and chemical adsorption
- 1.2.2.3 The active site of solid catalysts
- 1.2.2.4 Anchoring effects
- 1.2.2.5 Experimental variables
- 1.2.2.6 Catalytic reactors
- 1.3 Conclusions and outlook
- References
- Chapter 2 Solid catalysts for environmentally benign synthesis
- 2.1 Introduction
- 2.2 Metal catalysts
- 2.2.1 Unsupported metals
- 2.2.1.1 Bulk or massive metals
- 2.2.1.2 Metal "blacks"
- 2.2.1.3 Skeletal metals
- 2.2.1.4 Noble metal oxides and hydroxides
- 2.2.1.5 Amorphous metal alloys
- 2.2.2 Supported metal catalyst
- 2.2.2.1 Catalyst supports
- SiO2
- Al2O3
- Other metal oxides and metal carbonates
- Magnetic catalyst supports
- Carbon-based supports
- Polymeric materials
- Biomass-based materials
- Self-supported catalysts
- 2.2.3 Heterogenized metal complexes and organocatalysts
- 2.2.4 Metal nanoparticle-based catalysts
- 2.3 Nonmetallic catalysts
- 2.3.1 Metal oxides
- 2.3.2 Heteropoly acids
- 2.3.3 Clays
- 2.3.4 Zeolites
- 2.3.5 Ion exchange resins
- 2.3.6 Metal-organic frameworks
- 2.3.7 Other nonmetallic catalytic materials
- 2.3.7.1 Molecular sieves, pillared layer solids, and other mesoporous solids
- 2.3.7.2 Composites and related materials
- 2.4 Conclusions and outlook
- References
- Chapter 3 Application of heterogeneous catalysis in the development of environmentally benign synthetic processes
- References.
- 3.3.3.2 Dihydroxylations with metals other than osmium
- 3.3.4 Wacker-type oxidation reactions
- 3.3.5 Oxidative cleavage of hydrocarbons
- 3.3.5.1 Cleavage to generate aldehydes and ketones
- 3.3.5.2 Cleavage to generate carboxylic acids and esters
- 3.3.5.3 Other oxidative cleavage reactions
- 3.3.6 Oxidation of C O and C N bonds
- 3.3.6.1 Oxidation of C O bonds
- 3.3.6.2 Oxidation of C N bonds
- 3.3.7 Dehydrogenation and aromatization of C C and C X bonds
- 3.3.8 Conclusions and outlook
- References
- Chapter 3.4 Metathesis by heterogeneous catalysts
- 3.4.1 Introduction
- 3.4.2 Cross-metathesis
- 3.4.3 Ring-closing metathesis
- 3.4.4 Ring-opening metathesis
- 3.4.5 Alkyne metathesis
- 3.4.6 Heterogeneous catalytic asymmetric metathesis
- 3.4.7 Metathesis applied to bioderived alkenes
- 3.4.8 Conclusions and outlook
- References
- Chapter 3.5 Friedel-Crafts and related reactions catalyzed by solid acids
- 3.5.1 Introduction
- 3.5.2 Alkylation, hydroxyalkylation
- 3.5.2.1 Alkylations with hydrocarbons
- 3.5.2.2 Alkylations with alcohols, ethers, aldehydes, and ketones
- 3.5.2.3 Alkylations with alkyl halides
- 3.5.2.4 Hydroxyalkylations
- 3.5.2.5 Intramolecular transalkylations-Rearrangements
- 3.5.3 Acylation
- 3.5.3.1 Acylations with carboxylic acids
- 3.5.3.2 Acylations with activated carboxylic acid derivatives
- 3.5.3.3 Intramolecular transacylations-Rearrangements
- 3.5.4 Friedel-Crafts cycliacyalkylations
- 3.5.5 Halogenation
- 3.5.6 Nitration
- 3.5.7 Sulfonation
- 3.5.8 Conclusions and outlook
- References
- Chapter 3.6 Cross-coupling reactions for environmentally benign synthesis
- 3.6.1 Introduction
- 3.6.2 The Heck coupling
- 3.6.2.1 Heck reactions using a heterogeneous catalyst in solution
- 3.6.2.2 Solvent-free Heck reactions
- 3.6.2.3 Heck reactions without palladium.
- 3.6.3 The Suzuki coupling
- 3.6.3.1 Palladium-catalyzed heterogeneous Suzuki coupling reactions
- 3.6.3.2 Palladium-free heterogeneous catalytic Suzuki coupling reactions
- 3.6.4 The Hiyama coupling
- 3.6.5 The Negishi coupling
- 3.6.6 The Kumada coupling
- 3.6.7 The Sonogashira coupling
- 3.6.8 The Tsuji-Trost allylation
- 3.6.9 Coupling reactions not involving a C C bond formation
- 3.6.9.1 C N bond-forming reactions
- 3.6.9.2 C O bond-forming reactions
- 3.6.9.3 C S bond-forming reactions
- 3.6.10 Conclusions and outlook
- References
- Chapter 3.7 Multicomponent reactions
- 3.7.1 Introduction
- 3.7.2 Carbonyl-based multicomponent reactions
- 3.7.2.1 Formation of 6-membered rings with multicomponent reactions
- 3.7.2.2 Formation of 5-membered rings with multicomponent reactions
- 3.7.2.3 Formation of aliphatic bonds
- 3.7.3 Isocyanide-based reactions
- 3.7.3.1 Isocyanide-based MCRs for the preparation of 5-membered rings
- 3.7.3.2 Isocyanide-based MCRs for the preparation of 5- and 6-membered heterocycles
- 3.7.3.3 Aliphatic bond formation
- 3.7.4 Conclusions and outlook
- References
- Chapter 3.8 Ring transformations by heterogeneous catalysis
- 3.8.1 Introduction
- 3.8.2 Cyclization
- 3.8.2.1 Intermolecular cyclization reactions
- 3.8.2.1.1 Diels-Alder and hetero-Diels-Alder reactions
- 3.8.2.1.2 Heterogeneous catalytic synthesis of six-membered rings
- Pyrazines and piperazines
- Pyridines
- Tetrahydropyranols
- 3.8.2.1.3 Heterogeneous catalytic synthesis of five-membered rings
- Pyrroles
- Furans
- The Huisgen 1,3-dipolar cycloaddition
- Application of phenylenediamines and/or diazotization
- Oxazolidinones/oxindoles
- Pyrazoles
- 3.8.2.2 Intramolecular cyclization reactions
- 3.8.2.2.1 Heterogeneous catalytic synthesis of five-membered rings
- The Nazarov cyclization
- Tetrahydrofurans.