Cargando…

Heterogeneous catalysis in sustainable synthesis

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: T�or�ok, B�ela (Autor), Schaefer, Christian (Autor), Kokel, Anne (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, [2022]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Heterogeneous Catalysis in Sustainable Synthesis
  • Copyright
  • Contents
  • Preface
  • Chapter 1 Heterogeneous catalysis for organic synthesis: Historical background and fundamentals
  • 1.1 Introduction and historical background
  • 1.2 Catalysis
  • 1.2.1 Fundamentals and basic definitions
  • 1.2.1.1 Catalyst and catalytic cycle
  • 1.2.1.2 Activation energy
  • 1.2.1.3 Other definitions
  • 1.2.2 Heterogeneous catalysis
  • 1.2.2.1 Catalytic surfaces
  • 1.2.2.2 Physical and chemical adsorption
  • 1.2.2.3 The active site of solid catalysts
  • 1.2.2.4 Anchoring effects
  • 1.2.2.5 Experimental variables
  • 1.2.2.6 Catalytic reactors
  • 1.3 Conclusions and outlook
  • References
  • Chapter 2 Solid catalysts for environmentally benign synthesis
  • 2.1 Introduction
  • 2.2 Metal catalysts
  • 2.2.1 Unsupported metals
  • 2.2.1.1 Bulk or massive metals
  • 2.2.1.2 Metal "blacks"
  • 2.2.1.3 Skeletal metals
  • 2.2.1.4 Noble metal oxides and hydroxides
  • 2.2.1.5 Amorphous metal alloys
  • 2.2.2 Supported metal catalyst
  • 2.2.2.1 Catalyst supports
  • SiO2
  • Al2O3
  • Other metal oxides and metal carbonates
  • Magnetic catalyst supports
  • Carbon-based supports
  • Polymeric materials
  • Biomass-based materials
  • Self-supported catalysts
  • 2.2.3 Heterogenized metal complexes and organocatalysts
  • 2.2.4 Metal nanoparticle-based catalysts
  • 2.3 Nonmetallic catalysts
  • 2.3.1 Metal oxides
  • 2.3.2 Heteropoly acids
  • 2.3.3 Clays
  • 2.3.4 Zeolites
  • 2.3.5 Ion exchange resins
  • 2.3.6 Metal-organic frameworks
  • 2.3.7 Other nonmetallic catalytic materials
  • 2.3.7.1 Molecular sieves, pillared layer solids, and other mesoporous solids
  • 2.3.7.2 Composites and related materials
  • 2.4 Conclusions and outlook
  • References
  • Chapter 3 Application of heterogeneous catalysis in the development of environmentally benign synthetic processes
  • References.
  • 3.3.3.2 Dihydroxylations with metals other than osmium
  • 3.3.4 Wacker-type oxidation reactions
  • 3.3.5 Oxidative cleavage of hydrocarbons
  • 3.3.5.1 Cleavage to generate aldehydes and ketones
  • 3.3.5.2 Cleavage to generate carboxylic acids and esters
  • 3.3.5.3 Other oxidative cleavage reactions
  • 3.3.6 Oxidation of C O and C N bonds
  • 3.3.6.1 Oxidation of C O bonds
  • 3.3.6.2 Oxidation of C N bonds
  • 3.3.7 Dehydrogenation and aromatization of C C and C X bonds
  • 3.3.8 Conclusions and outlook
  • References
  • Chapter 3.4 Metathesis by heterogeneous catalysts
  • 3.4.1 Introduction
  • 3.4.2 Cross-metathesis
  • 3.4.3 Ring-closing metathesis
  • 3.4.4 Ring-opening metathesis
  • 3.4.5 Alkyne metathesis
  • 3.4.6 Heterogeneous catalytic asymmetric metathesis
  • 3.4.7 Metathesis applied to bioderived alkenes
  • 3.4.8 Conclusions and outlook
  • References
  • Chapter 3.5 Friedel-Crafts and related reactions catalyzed by solid acids
  • 3.5.1 Introduction
  • 3.5.2 Alkylation, hydroxyalkylation
  • 3.5.2.1 Alkylations with hydrocarbons
  • 3.5.2.2 Alkylations with alcohols, ethers, aldehydes, and ketones
  • 3.5.2.3 Alkylations with alkyl halides
  • 3.5.2.4 Hydroxyalkylations
  • 3.5.2.5 Intramolecular transalkylations-Rearrangements
  • 3.5.3 Acylation
  • 3.5.3.1 Acylations with carboxylic acids
  • 3.5.3.2 Acylations with activated carboxylic acid derivatives
  • 3.5.3.3 Intramolecular transacylations-Rearrangements
  • 3.5.4 Friedel-Crafts cycliacyalkylations
  • 3.5.5 Halogenation
  • 3.5.6 Nitration
  • 3.5.7 Sulfonation
  • 3.5.8 Conclusions and outlook
  • References
  • Chapter 3.6 Cross-coupling reactions for environmentally benign synthesis
  • 3.6.1 Introduction
  • 3.6.2 The Heck coupling
  • 3.6.2.1 Heck reactions using a heterogeneous catalyst in solution
  • 3.6.2.2 Solvent-free Heck reactions
  • 3.6.2.3 Heck reactions without palladium.
  • 3.6.3 The Suzuki coupling
  • 3.6.3.1 Palladium-catalyzed heterogeneous Suzuki coupling reactions
  • 3.6.3.2 Palladium-free heterogeneous catalytic Suzuki coupling reactions
  • 3.6.4 The Hiyama coupling
  • 3.6.5 The Negishi coupling
  • 3.6.6 The Kumada coupling
  • 3.6.7 The Sonogashira coupling
  • 3.6.8 The Tsuji-Trost allylation
  • 3.6.9 Coupling reactions not involving a C C bond formation
  • 3.6.9.1 C N bond-forming reactions
  • 3.6.9.2 C O bond-forming reactions
  • 3.6.9.3 C S bond-forming reactions
  • 3.6.10 Conclusions and outlook
  • References
  • Chapter 3.7 Multicomponent reactions
  • 3.7.1 Introduction
  • 3.7.2 Carbonyl-based multicomponent reactions
  • 3.7.2.1 Formation of 6-membered rings with multicomponent reactions
  • 3.7.2.2 Formation of 5-membered rings with multicomponent reactions
  • 3.7.2.3 Formation of aliphatic bonds
  • 3.7.3 Isocyanide-based reactions
  • 3.7.3.1 Isocyanide-based MCRs for the preparation of 5-membered rings
  • 3.7.3.2 Isocyanide-based MCRs for the preparation of 5- and 6-membered heterocycles
  • 3.7.3.3 Aliphatic bond formation
  • 3.7.4 Conclusions and outlook
  • References
  • Chapter 3.8 Ring transformations by heterogeneous catalysis
  • 3.8.1 Introduction
  • 3.8.2 Cyclization
  • 3.8.2.1 Intermolecular cyclization reactions
  • 3.8.2.1.1 Diels-Alder and hetero-Diels-Alder reactions
  • 3.8.2.1.2 Heterogeneous catalytic synthesis of six-membered rings
  • Pyrazines and piperazines
  • Pyridines
  • Tetrahydropyranols
  • 3.8.2.1.3 Heterogeneous catalytic synthesis of five-membered rings
  • Pyrroles
  • Furans
  • The Huisgen 1,3-dipolar cycloaddition
  • Application of phenylenediamines and/or diazotization
  • Oxazolidinones/oxindoles
  • Pyrazoles
  • 3.8.2.2 Intramolecular cyclization reactions
  • 3.8.2.2.1 Heterogeneous catalytic synthesis of five-membered rings
  • The Nazarov cyclization
  • Tetrahydrofurans.