Cargando…

Principles and clinical diagnostic applications of surface-enhanced raman spectroscopy /

Principles and Clinical Diagnostic Applications of Surface-Enhanced Raman Spectroscopy summarizes the principles of surface-enhanced Raman scattering/spectroscopy (SERS) and plasmonic nanomaterials for SERS, with a focus on SERS applications in clinical diagnostics. This book covers the key concepts...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Wang, Yuling (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Cambridge, MA : Elsevier, 2022.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Principles and Clinical Diagnostic Applications of Surface-Enhanced Raman Spectroscopy
  • Copyright Page
  • Contents
  • List of contributors
  • 1 Principles of surface-enhanced Raman spectroscopy
  • 1.1 Introduction
  • 1.2 Surface plasmon resonance
  • 1.3 Optical properties of metals
  • 1.4 Local field enhancement
  • 1.5 Surface-enhanced Raman spectroscopy enhancement and E4 approximation
  • 1.6 Choice of metals
  • 1.7 The effect of size and shape on the field enhancement
  • 1.8 Hot spots and various configurations for SERS
  • 1.9 Estimation of the surface enhancement factor
  • 1.10 Chemical mechanism
  • 1.11 Spectral analysis
  • 1.12 Selection of SERS substrates
  • 1.13 SERS detection modes
  • 1.14 Key to the success of SERS measurements
  • References
  • 2 Nanoplasmonic materials for surface-enhanced Raman scattering
  • 2.1 The role of nanoplasmonic materials in surface-enhanced Raman scattering enhancement
  • 2.2 Metallic nanoplasmonic materials
  • 2.2.1 Shape-controlled synthesis of individual nanoparticles (0D/1D)
  • 2.2.1.1 Capping agent-directed shape-controlled nanoparticles
  • 2.2.1.2 Postsynthetic morphological modifications
  • 2.2.2 Two-dimensional platforms for electromagnetic field enhancement
  • 2.2.2.1 DNA-programmable self-assembly
  • 2.2.2.2 Interfacial self-assembly
  • 2.2.2.3 Template-assisted self-assembly
  • 2.2.3 Three-dimensional platforms for electromagnetic field enhancement
  • 2.2.3.1 Multilayered 3D supercrystals
  • 2.2.3.2 Template-based 3D platforms
  • 2.2.3.3 Substrate-less 3D platforms
  • 2.2.4 Analyte manipulation strategies
  • 2.2.4.1 Modifying surface wetting properties of plasmonic surfaces
  • 2.2.4.2 Metal-organic frameworks
  • 2.3 Nonconventional surface-enhanced Raman scattering platforms
  • 2.3.1 Bimetallic systems
  • 2.3.2 Hybrid nanoplasmonic platforms
  • 2.3.2.1 Shell-isolated nanoparticles.
  • 2.3.2.2 Graphene-based hybrid surface-enhanced Raman scattering substrates
  • 2.3.2.3 Semiconductor-based hybrid platforms
  • 2.4 Conclusion and outlook
  • References
  • 3 Experimental aspects of surface-enhanced Raman scattering for biological applications
  • 3.1 Combination ways of surface-enhanced Raman scattering substrates with the analytical systems
  • 3.1.1 Colloidal metal nanoparticles
  • 3.1.1.1 The combination ways of metal nanoparticles to different sized biosystems
  • 3.1.1.1.1 Electrostatic interaction
  • 3.1.1.1.2 Random distribution
  • 3.1.1.1.3 In situ reduction of metal nanoparticles
  • 3.1.1.1.4 Active/passive targeting of metal nanoparticles
  • 3.1.1.2 Biocompatibility
  • 3.1.1.3 Tendency of aggregation or monodisperse of metal colloids
  • 3.1.1.3.1 Salt induced aggregation and activation
  • 3.1.1.3.2 Aggregation driven by external factors
  • 3.1.1.3.3 Monodisperse
  • 3.1.2 Solid-supported metal nanostructures
  • 3.1.2.1 Surface modification for metal nanostructures
  • 3.1.2.2 Needle-like surface-enhanced Raman scattering microprobes
  • 3.1.2.2.1 Fabrication
  • 3.1.2.2.2 Excitation/collection ways
  • 3.1.2.2.3 Platforms for single-cell analysis
  • 3.1.2.2.4 Merits and uniqueness
  • 3.1.3 Other unique surface-enhanced Raman scattering substrates
  • 3.1.3.1 2D surface-enhanced Raman scattering hotspot substrates for high-resolution imaging
  • 3.1.3.2 3D plasmonic colloidosomes for single-cell analysis
  • 3.2 Laser-related issues
  • 3.2.1 Laser wavelength selection according to surface plasmon resonance
  • 3.2.2 Laser wavelength and surface-enhanced resonance Raman scattering
  • 3.2.3 Laser power setting and defocusing for avoiding photodamage
  • 3.2.4 Light penetration depth for in vivo detection
  • 3.3 Reproducibility and reliability
  • 3.3.1 Mean spectra
  • 3.3.2 Homogenization of sample.
  • 3.3.3 Controlled immobilization and orientation
  • 3.3.4 Purification of the surface of surface-enhanced Raman scattering substrates
  • 3.3.5 Contributions of media and reagents
  • 3.3.6 Integration of surface-enhanced Raman scattering with microfluidics
  • 3.3.7 Internal standard method
  • 3.3.8 Reporters having bands in silent range
  • 3.4 Raman data-related issues
  • 3.4.1 Data processing
  • 3.4.2 Chemometric sorting algorithm
  • References
  • 4 Label-free surface-enhanced Raman scattering for clinical applications
  • 4.1 General aspects
  • 4.1.1 Defining label-free surface-enhanced Raman scattering
  • 4.2 Label-free SERS and the complexity of biological samples
  • 4.3 Clinical needs and analytical strategies
  • 4.4 Experimental aspects
  • 4.4.1 Preanalytical sample processing
  • 4.4.2 SERS substrates and the nano-bio interface
  • 4.4.3 Excitation wavelengths
  • 4.4.4 Common artifacts and anomalous bands
  • 4.5 Study design and data analysis
  • 4.5.1 Sources of variability
  • 4.5.2 Data structure and sample size
  • 4.5.3 Data analysis: preprocessing, representation, and modeling
  • 4.6 Spectral interpretation
  • 4.7 Perspectives and challenges
  • References
  • 5 Surface-enhanced Raman scattering nanotags design and synthesis
  • 5.1 SERS nanotags and its optical properties
  • 5.2 Clinical application of SERS nanotags: strategies and essence
  • 5.3 SERS nanotags design and synthesis
  • 5.3.1 Highly bright SERS nanotags: substrate construction
  • 5.3.1.1 Single gold/silver NPs
  • 5.3.1.2 Gold nanoparticles rich in tips or gaps
  • 5.3.1.3 Gold/silver nanoaggregates
  • 5.3.2 Weak-background SERS nanotags: signal output
  • 5.3.2.1 New generation of Raman reporters in "bio-silent" region
  • 5.3.2.1.1 Small triple-bond containing molecules
  • 5.3.2.1.2 Graphitic nano capsules
  • 5.3.2.1.3 Prussian-blue and its analogs shells.
  • 5.3.2.2 Spectral coding on SERS nanotags
  • 5.3.2.2.1 Click, mixing and combined SERS emission
  • 5.3.2.2.2 Joint-encoding by fluorescence-SERS emission
  • 5.3.3 Low-blinking SERS nanotags: surface coating
  • 5.3.3.1 Biomolecule coating
  • 5.3.3.2 Polymer coating
  • 5.3.3.3 Silica coating
  • 5.3.4 Multifunctional SERS nanotags: materials combination
  • 5.3.4.1 Magnetic materials for separation
  • 5.3.4.2 Multimodal imaging materials
  • 5.3.4.3 Therapeutic materials
  • 5.4 Summary and prospect
  • References
  • 6 Surface-enhanced Raman spectroscopy for circulating biomarkers detection in clinical diagnosis
  • 6.1 Introduction
  • 6.2 Sample preparation and detection methods
  • 6.3 Circulating tumor cells
  • 6.3.1 Features and current techniques for circulating tumor cells analysis
  • 6.3.2 SERS strategy for CTCs analysis
  • 6.3.2.1 Quantification of circulating tumor cells
  • 6.3.2.2 Characterization of circulating tumor cells surface biomarkers
  • 6.3.3 SERS-based assays for CTCs analysis in clinical samples
  • 6.3.4 Insights on SERS-based CTCs analysis in a clinical setting
  • 6.4 SERS analysis of extracellular vesicles
  • 6.4.1 Biological roles and current analysis techniques of extracellular vesicles
  • 6.4.2 SERS strategies for EVs detection and characterization
  • 6.4.2.1 Discrimination of EVs origins
  • 6.4.2.2 Profiling of EVs bio-composition
  • 6.4.3 SERS-based assay for EV analysis with clinical samples
  • 6.4.4 Insights on SERS-based EVs analysis with clinical setting
  • 6.5 SERS analysis of circulating tumor-derived nucleic acids
  • 6.5.1 Biological significance and current analysis techniques for ctNAs
  • 6.5.2 SERS strategies for ctNAs analysis
  • 6.5.2.1 Selectively labeling ctNA regions of interest
  • 6.5.2.2 Direct readout of ctNA molecular information
  • 6.5.3 ctDNA analysis by SERS
  • 6.5.3.1 Mutant ctDNA detection.
  • 6.5.3.2 Aberrant methylated ctDNA detection
  • 6.5.3.3 Other ctDNA detection
  • 6.5.4 ctRNA analysis by SERS
  • 6.5.4.1 ctmiRNA detection
  • 6.5.4.2 Other disease-associated RNA detection
  • 6.5.5 Insights into SERS-based ctNAs analysis with clinical samples
  • 6.6 Tumor-associated proteins
  • 6.6.1 Clinical significance and current analysis techniques of circulating proteins
  • 6.6.2 SERS-based strategy for protein analysis
  • 6.6.2.1 Magnetic enrichment-based immunoassay
  • 6.6.2.2 Assays with unique signal-output design
  • 6.6.2.3 Immunoassays on 2D arrays
  • 6.6.3 Insights on SERS-based assays for disease-associated protein detection
  • 6.7 Conclusions and perspectives
  • References
  • 7 Surface-enhanced Raman spectroscopy-based microfluidic devices for in vitro diagnostics
  • 7.1 Introduction
  • 7.2 Various surface-enhanced Raman spectroscopy-based microfluidic devices for in vitro diagnostics
  • 7.2.1 Application of paper-based microfluidics
  • 7.2.2 Magnetic particle-based microfluidics
  • 7.2.3 Gold-patterned microarray-embedded microfluidic platforms
  • 7.2.4 Continuous-flow microfluidics
  • 7.2.5 Surface-enhanced Raman spectroscopy assays using droplet-based microfluidics
  • 7.3 Summary
  • Acknowledgment
  • References
  • 8 SERS for sensing and imaging in live cells
  • 8.1 Recent trends in SERS from animal cells: probe of cellular biochemistry
  • 8.2 Biomolecular SERS from intracellular nanoprobes
  • 8.3 Probing lipid-rich environments in pathology
  • 8.4 SERS for monitoring of drug action
  • 8.5 Composite SERS probes for intracellular applications with different physical functions
  • Acknowledgments
  • References
  • 9 iSERS microscopy: point-of-care diagnosis and tissue imaging
  • 9.1 Point-of-care diagnosis
  • 9.1.1 Principle of a lateral flow assay
  • 9.1.2 SERS-based lateral flow assay
  • 9.1.3 SERS-based multiplex lateral flow assay.