Cargando…

Principles and clinical diagnostic applications of surface-enhanced raman spectroscopy /

Principles and Clinical Diagnostic Applications of Surface-Enhanced Raman Spectroscopy summarizes the principles of surface-enhanced Raman scattering/spectroscopy (SERS) and plasmonic nanomaterials for SERS, with a focus on SERS applications in clinical diagnostics. This book covers the key concepts...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Wang, Yuling (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Cambridge, MA : Elsevier, 2022.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1268516185
003 OCoLC
005 20231120010604.0
006 m o d
007 cr cnu---unuuu
008 210921s2022 ne a ob 001 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d YDXIT  |d OCLCO  |d N$T  |d OPELS  |d OCLCF  |d OCLCQ  |d OCLCO  |d K6U  |d SFB  |d OCLCQ  |d OCLCO 
019 |a 1287273732  |a 1287872132 
020 |a 012823198X  |q (electronic book) 
020 |a 9780128231982  |q (electronic bk.) 
020 |a 9780128211212  |q (electronic bk.) 
020 |a 0128211210  |q (electronic bk.) 
035 |a (OCoLC)1268516185  |z (OCoLC)1287273732  |z (OCoLC)1287872132 
050 4 |a QD96.R34  |b P75 2022 
082 0 4 |a 535.846  |2 23 
245 0 0 |a Principles and clinical diagnostic applications of surface-enhanced raman spectroscopy /  |c edited by Yuling Wang. 
264 1 |a Amsterdam ;  |a Cambridge, MA :  |b Elsevier,  |c 2022. 
300 |a 1 online resource :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from digital title page (viewed on September 24, 2021). 
520 |a Principles and Clinical Diagnostic Applications of Surface-Enhanced Raman Spectroscopy summarizes the principles of surface-enhanced Raman scattering/spectroscopy (SERS) and plasmonic nanomaterials for SERS, with a focus on SERS applications in clinical diagnostics. This book covers the key concepts from the fundamentals, materials, experimental aspects, and applications of SERS in clinical diagnostics with discussions on label-free/direct SERS assay, design and synthesis of SERS nanotags, SERS nanotags for point-of-care diagnostics, microfluidic SERS assay, and in vitro and in vivo sensing and imaging. Written by experts from around the world, this comprehensive volume showcases the recent progress of SERS applications in clinical diagnostics and helps readers understand when and how to use SERS in a clinical setting. 
505 0 |a Front Cover -- Principles and Clinical Diagnostic Applications of Surface-Enhanced Raman Spectroscopy -- Copyright Page -- Contents -- List of contributors -- 1 Principles of surface-enhanced Raman spectroscopy -- 1.1 Introduction -- 1.2 Surface plasmon resonance -- 1.3 Optical properties of metals -- 1.4 Local field enhancement -- 1.5 Surface-enhanced Raman spectroscopy enhancement and E4 approximation -- 1.6 Choice of metals -- 1.7 The effect of size and shape on the field enhancement -- 1.8 Hot spots and various configurations for SERS -- 1.9 Estimation of the surface enhancement factor -- 1.10 Chemical mechanism -- 1.11 Spectral analysis -- 1.12 Selection of SERS substrates -- 1.13 SERS detection modes -- 1.14 Key to the success of SERS measurements -- References -- 2 Nanoplasmonic materials for surface-enhanced Raman scattering -- 2.1 The role of nanoplasmonic materials in surface-enhanced Raman scattering enhancement -- 2.2 Metallic nanoplasmonic materials -- 2.2.1 Shape-controlled synthesis of individual nanoparticles (0D/1D) -- 2.2.1.1 Capping agent-directed shape-controlled nanoparticles -- 2.2.1.2 Postsynthetic morphological modifications -- 2.2.2 Two-dimensional platforms for electromagnetic field enhancement -- 2.2.2.1 DNA-programmable self-assembly -- 2.2.2.2 Interfacial self-assembly -- 2.2.2.3 Template-assisted self-assembly -- 2.2.3 Three-dimensional platforms for electromagnetic field enhancement -- 2.2.3.1 Multilayered 3D supercrystals -- 2.2.3.2 Template-based 3D platforms -- 2.2.3.3 Substrate-less 3D platforms -- 2.2.4 Analyte manipulation strategies -- 2.2.4.1 Modifying surface wetting properties of plasmonic surfaces -- 2.2.4.2 Metal-organic frameworks -- 2.3 Nonconventional surface-enhanced Raman scattering platforms -- 2.3.1 Bimetallic systems -- 2.3.2 Hybrid nanoplasmonic platforms -- 2.3.2.1 Shell-isolated nanoparticles. 
505 8 |a 2.3.2.2 Graphene-based hybrid surface-enhanced Raman scattering substrates -- 2.3.2.3 Semiconductor-based hybrid platforms -- 2.4 Conclusion and outlook -- References -- 3 Experimental aspects of surface-enhanced Raman scattering for biological applications -- 3.1 Combination ways of surface-enhanced Raman scattering substrates with the analytical systems -- 3.1.1 Colloidal metal nanoparticles -- 3.1.1.1 The combination ways of metal nanoparticles to different sized biosystems -- 3.1.1.1.1 Electrostatic interaction -- 3.1.1.1.2 Random distribution -- 3.1.1.1.3 In situ reduction of metal nanoparticles -- 3.1.1.1.4 Active/passive targeting of metal nanoparticles -- 3.1.1.2 Biocompatibility -- 3.1.1.3 Tendency of aggregation or monodisperse of metal colloids -- 3.1.1.3.1 Salt induced aggregation and activation -- 3.1.1.3.2 Aggregation driven by external factors -- 3.1.1.3.3 Monodisperse -- 3.1.2 Solid-supported metal nanostructures -- 3.1.2.1 Surface modification for metal nanostructures -- 3.1.2.2 Needle-like surface-enhanced Raman scattering microprobes -- 3.1.2.2.1 Fabrication -- 3.1.2.2.2 Excitation/collection ways -- 3.1.2.2.3 Platforms for single-cell analysis -- 3.1.2.2.4 Merits and uniqueness -- 3.1.3 Other unique surface-enhanced Raman scattering substrates -- 3.1.3.1 2D surface-enhanced Raman scattering hotspot substrates for high-resolution imaging -- 3.1.3.2 3D plasmonic colloidosomes for single-cell analysis -- 3.2 Laser-related issues -- 3.2.1 Laser wavelength selection according to surface plasmon resonance -- 3.2.2 Laser wavelength and surface-enhanced resonance Raman scattering -- 3.2.3 Laser power setting and defocusing for avoiding photodamage -- 3.2.4 Light penetration depth for in vivo detection -- 3.3 Reproducibility and reliability -- 3.3.1 Mean spectra -- 3.3.2 Homogenization of sample. 
505 8 |a 3.3.3 Controlled immobilization and orientation -- 3.3.4 Purification of the surface of surface-enhanced Raman scattering substrates -- 3.3.5 Contributions of media and reagents -- 3.3.6 Integration of surface-enhanced Raman scattering with microfluidics -- 3.3.7 Internal standard method -- 3.3.8 Reporters having bands in silent range -- 3.4 Raman data-related issues -- 3.4.1 Data processing -- 3.4.2 Chemometric sorting algorithm -- References -- 4 Label-free surface-enhanced Raman scattering for clinical applications -- 4.1 General aspects -- 4.1.1 Defining label-free surface-enhanced Raman scattering -- 4.2 Label-free SERS and the complexity of biological samples -- 4.3 Clinical needs and analytical strategies -- 4.4 Experimental aspects -- 4.4.1 Preanalytical sample processing -- 4.4.2 SERS substrates and the nano-bio interface -- 4.4.3 Excitation wavelengths -- 4.4.4 Common artifacts and anomalous bands -- 4.5 Study design and data analysis -- 4.5.1 Sources of variability -- 4.5.2 Data structure and sample size -- 4.5.3 Data analysis: preprocessing, representation, and modeling -- 4.6 Spectral interpretation -- 4.7 Perspectives and challenges -- References -- 5 Surface-enhanced Raman scattering nanotags design and synthesis -- 5.1 SERS nanotags and its optical properties -- 5.2 Clinical application of SERS nanotags: strategies and essence -- 5.3 SERS nanotags design and synthesis -- 5.3.1 Highly bright SERS nanotags: substrate construction -- 5.3.1.1 Single gold/silver NPs -- 5.3.1.2 Gold nanoparticles rich in tips or gaps -- 5.3.1.3 Gold/silver nanoaggregates -- 5.3.2 Weak-background SERS nanotags: signal output -- 5.3.2.1 New generation of Raman reporters in "bio-silent" region -- 5.3.2.1.1 Small triple-bond containing molecules -- 5.3.2.1.2 Graphitic nano capsules -- 5.3.2.1.3 Prussian-blue and its analogs shells. 
505 8 |a 5.3.2.2 Spectral coding on SERS nanotags -- 5.3.2.2.1 Click, mixing and combined SERS emission -- 5.3.2.2.2 Joint-encoding by fluorescence-SERS emission -- 5.3.3 Low-blinking SERS nanotags: surface coating -- 5.3.3.1 Biomolecule coating -- 5.3.3.2 Polymer coating -- 5.3.3.3 Silica coating -- 5.3.4 Multifunctional SERS nanotags: materials combination -- 5.3.4.1 Magnetic materials for separation -- 5.3.4.2 Multimodal imaging materials -- 5.3.4.3 Therapeutic materials -- 5.4 Summary and prospect -- References -- 6 Surface-enhanced Raman spectroscopy for circulating biomarkers detection in clinical diagnosis -- 6.1 Introduction -- 6.2 Sample preparation and detection methods -- 6.3 Circulating tumor cells -- 6.3.1 Features and current techniques for circulating tumor cells analysis -- 6.3.2 SERS strategy for CTCs analysis -- 6.3.2.1 Quantification of circulating tumor cells -- 6.3.2.2 Characterization of circulating tumor cells surface biomarkers -- 6.3.3 SERS-based assays for CTCs analysis in clinical samples -- 6.3.4 Insights on SERS-based CTCs analysis in a clinical setting -- 6.4 SERS analysis of extracellular vesicles -- 6.4.1 Biological roles and current analysis techniques of extracellular vesicles -- 6.4.2 SERS strategies for EVs detection and characterization -- 6.4.2.1 Discrimination of EVs origins -- 6.4.2.2 Profiling of EVs bio-composition -- 6.4.3 SERS-based assay for EV analysis with clinical samples -- 6.4.4 Insights on SERS-based EVs analysis with clinical setting -- 6.5 SERS analysis of circulating tumor-derived nucleic acids -- 6.5.1 Biological significance and current analysis techniques for ctNAs -- 6.5.2 SERS strategies for ctNAs analysis -- 6.5.2.1 Selectively labeling ctNA regions of interest -- 6.5.2.2 Direct readout of ctNA molecular information -- 6.5.3 ctDNA analysis by SERS -- 6.5.3.1 Mutant ctDNA detection. 
505 8 |a 6.5.3.2 Aberrant methylated ctDNA detection -- 6.5.3.3 Other ctDNA detection -- 6.5.4 ctRNA analysis by SERS -- 6.5.4.1 ctmiRNA detection -- 6.5.4.2 Other disease-associated RNA detection -- 6.5.5 Insights into SERS-based ctNAs analysis with clinical samples -- 6.6 Tumor-associated proteins -- 6.6.1 Clinical significance and current analysis techniques of circulating proteins -- 6.6.2 SERS-based strategy for protein analysis -- 6.6.2.1 Magnetic enrichment-based immunoassay -- 6.6.2.2 Assays with unique signal-output design -- 6.6.2.3 Immunoassays on 2D arrays -- 6.6.3 Insights on SERS-based assays for disease-associated protein detection -- 6.7 Conclusions and perspectives -- References -- 7 Surface-enhanced Raman spectroscopy-based microfluidic devices for in vitro diagnostics -- 7.1 Introduction -- 7.2 Various surface-enhanced Raman spectroscopy-based microfluidic devices for in vitro diagnostics -- 7.2.1 Application of paper-based microfluidics -- 7.2.2 Magnetic particle-based microfluidics -- 7.2.3 Gold-patterned microarray-embedded microfluidic platforms -- 7.2.4 Continuous-flow microfluidics -- 7.2.5 Surface-enhanced Raman spectroscopy assays using droplet-based microfluidics -- 7.3 Summary -- Acknowledgment -- References -- 8 SERS for sensing and imaging in live cells -- 8.1 Recent trends in SERS from animal cells: probe of cellular biochemistry -- 8.2 Biomolecular SERS from intracellular nanoprobes -- 8.3 Probing lipid-rich environments in pathology -- 8.4 SERS for monitoring of drug action -- 8.5 Composite SERS probes for intracellular applications with different physical functions -- Acknowledgments -- References -- 9 iSERS microscopy: point-of-care diagnosis and tissue imaging -- 9.1 Point-of-care diagnosis -- 9.1.1 Principle of a lateral flow assay -- 9.1.2 SERS-based lateral flow assay -- 9.1.3 SERS-based multiplex lateral flow assay. 
650 0 |a Raman spectroscopy. 
650 6 |a Spectroscopie Raman.  |0 (CaQQLa)201-0016510 
650 7 |a Raman spectroscopy  |2 fast  |0 (OCoLC)fst01089674 
700 1 |a Wang, Yuling,  |e editor. 
776 0 8 |i Print version:  |z 0128211210  |z 9780128211212  |w (OCoLC)1164492381 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128211212  |z Texto completo