Tabla de Contenidos:
  • Front Cover
  • Prehospital Transport and Whole-Body Vibration
  • Copyright Page
  • Contents
  • Preface
  • Acknowledgments
  • 1 Fundamentals of motion and biomechanics
  • 1.1 Introduction
  • 1.2 Basic vector algebra
  • 1.2.1 Vector addition and subtraction
  • 1.2.2 Vector multiplication
  • 1.2.3 Projection of a vector in a certain direction
  • 1.2.4 Geometric representation of vectors
  • 1.2.5 Cross product
  • 1.2.6 Vector calculus
  • 1.2.7 Derivative of a unit vector
  • 1.2.8 Matrix algebra
  • 1.3 Complex numbers
  • 1.3.1 Hermitian matrix
  • 1.3.2 Unitary matrix
  • 1.3.3 Numerical differentiation of time signals
  • 1.3.4 Motion of a particle
  • 1.3.5 Displacement, velocity, and acceleration
  • 1.3.6 Curvilinear motion
  • 1.3.6.1 Tangential and normal components
  • 1.3.6.2 Polar components
  • 1.4 Forces and motion
  • 1.4.1 Kinetics of rigid bodies
  • 1.4.2 Forces and motion of human-body segments
  • 1.5 Basic statistics
  • 1.5.1 Mean or average
  • 1.5.2 Median
  • 1.5.3 Range, variance, and standard deviation
  • 1.5.4 Root mean square
  • 1.5.5 Regression analysis: least-squares line fitting
  • 1.5.6 Distribution of data
  • 1.5.7 Confidence intervals
  • 1.5.8 Probability value
  • 1.6 Time and frequency domain analysis
  • 1.6.1 Fourier transform
  • 1.7 Vibration fundamentals
  • 1.7.1 Random vibration analysis
  • 1.7.2 Equivalent system
  • 1.7.3 Human modeling in vibration
  • 1.7.4 Modeling of human head-neck
  • 1.7.5 Supine-human model
  • 1.7.6 Human coordinate system in whole-body vibration
  • 1.8 Chapter summary
  • References
  • 2 Measurement of human response to vibration
  • 2.1 Introduction
  • 2.1.1 Historical background
  • 2.2 Traditional measurement techniques in WBV
  • 2.2.1 Accelerometers
  • 2.2.2 AC and DC accelerometers
  • 2.2.3 Limitations of accelerometers in WBV
  • 2.3 Marker-based motion capture.
  • 2.3.1 Velocity and acceleration from markers
  • 2.3.2 Methodology of using marker displacement to calculate acceleration
  • 2.3.3 Case study of motion capture of seated subjects
  • 2.3.4 Results: validation of acceleration using accelerometers and markers
  • 2.3.5 Virtual markers
  • 2.3.6 Methodology of virtual markers
  • 2.3.7 Case study of virtual markers
  • 2.3.7.1 Data collection
  • 2.3.7.2 Results
  • 2.4 Inertial sensors
  • 2.4.1 Transformation matrices from inertial sensors
  • 2.4.2 Case study: removing gravity components from accelerometer measurements
  • 2.5 Introduction to the concept of a hybrid system
  • 2.5.1 Hybrid marker-accelerometer system
  • 2.5.2 Static testing of hybrid systems
  • 2.5.3 Dynamic testing of a hybrid system
  • 2.5.4 Case study: simulated real-life application of hybrid system
  • 2.5.5 Case study: measurement of a supine human under whole-body vibration
  • 2.5.6 Motion platform (shaking table)
  • 2.5.7 Subject preparation
  • 2.5.8 Sensor placement and data collection
  • 2.6 Summary and concluding remarks
  • References
  • 3 Biodynamics of supine humans subjected to vibration and shocks
  • 3.1 Introduction
  • 3.2 Biodynamical evaluation functions
  • 3.2.1 Transmissibility
  • 3.2.2 Single input-single output transmissibility
  • 3.2.3 3D-multiple input-3D-multiple output transmissibility
  • 3.2.4 Single-input-3D-multiple output transmissibility
  • 3.2.5 6D-multiple input-6D-multiple output transmissibility
  • 3.2.6 Effective transmissibility
  • 3.2.7 Case study: effective transmissibility
  • 3.2.7.1 Single input-3D multiple output condition
  • 3.2.7.2 3D-multiple input-3D-multiple output condition
  • 3.2.7.3 6D-multiple input-6D-multiple output condition
  • 3.2.8 Apparent mass
  • 3.2.9 Driving point mechanical impedance
  • 3.2.10 Absorbed power
  • 3.3 Experimentation in supine transport
  • 3.3.1 Experimental setup.
  • 3.3.2 Effect of vibration and immobilization on human biodynamic response
  • 3.3.2.1 Effect of support surfaces
  • 3.3.2.2 Effect of straps
  • 3.3.2.3 Effect of shocks
  • 3.3.2.4 Effect of vibration magnitude
  • 3.3.3 Relative transmissibility
  • 3.3.4 Case study: 3D transmissibility of supine subject
  • 3.3.5 Effect of posture
  • 3.3.6 Effects of gender, mass, and anthropometry
  • 3.3.7 Case study: example field study
  • 3.3.7.1 Subject preparation
  • 3.3.7.2 Testing and data collection
  • 3.3.8 Data analysis
  • 3.3.9 General findings
  • 3.3.10 Effect of gender
  • 3.3.10.1 Effect of body mass
  • 3.3.10.2 Effect of stature
  • 3.3.10.3 Effect of vibration magnitude
  • 3.3.10.4 Limitations
  • 3.4 Summary
  • References
  • 4 Discomfort in whole-body vibration
  • 4.1 Introduction
  • 4.2 Methods of discomfort quantification
  • 4.2.1 Dynamic discomfort-history
  • 4.2.2 Subjective evaluation of discomfort
  • 4.2.2.1 Analysis of reported discomfort data
  • 4.2.2.2 Case study: subjective evaluation of discomfort
  • 4.2.2.2.1 Data collection
  • 4.2.2.2.2 Analysis of the data
  • 4.2.3 Objective evaluation of discomfort
  • 4.2.3.1 ISO evaluation of discomfort
  • 4.2.3.1.1 Weighted RMS acceleration evaluation
  • 4.2.3.1.2 Effect of vibration direction
  • 4.2.3.1.3 Validity and limitations of the current standards
  • 4.2.4 Approaches for evaluation of objective discomfort
  • 4.2.4.1 Predictive discomfort using transfer functions
  • 4.2.4.2 Dynamic discomfort and the role of human-segments motion
  • 4.2.4.3 Case study: role of body segments motion
  • 4.2.4.3.1 Methods and data collection
  • 4.2.4.3.2 Data analysis and results
  • 4.3 The role of the rotational and translational motions on dynamic discomfort
  • 4.3.1 Case study: role of rotational motion in discomfort
  • 4.3.1.1 Reported discomfort
  • 4.3.1.2 Relative RMS angular velocity.
  • 4.4 Predictive discomfort of supine humans
  • 4.4.1 Case study
  • 4.4.2 Case study: predictive discomfort for supine postures
  • 4.5 Predictive discomfort of nonneutral postures in seated positions
  • 4.5.1 Case study: effect of nonneutral postures on discomfort
  • 4.5.1.1 Study design and data collection
  • 4.5.1.1.1 Data analysis and discomfort function formulation
  • 4.5.1.1.2 Results
  • 4.5.1.1.3 Predictive discomfort and posture results
  • 4.5.2 Predictive discomfort and ISO standard
  • 4.5.3 Predictive discomfort using the angular acceleration versus angular velocity
  • 4.6 Chapter summary
  • References
  • 5 Justification and efficacy of prehospital immobilization systems
  • 5.1 Introduction
  • 5.2 Ongoing debate
  • 5.3 Whole-body transport and immobilization
  • 5.3.1 Types of studies on validity of immobilization systems
  • 5.4 Immobilization of the cervical spine
  • 5.4.1 Case study: immobilization of the cervical spine-dynamic study
  • 5.4.1.1 Lab testing
  • 5.4.1.2 Results
  • 5.5 Immobilization of the lumbar spine
  • 5.5.1 Case study of lumbar immobilization
  • 5.5.2 Results
  • 5.6 The need for standards for prehospital transport
  • 5.7 Summary
  • References
  • Index
  • Back Cover.