Cargando…

Advances in imaging and electron physics. Volume 219 /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: H�ytch, Martin, Hawkes, P. W.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] : Academic Press, 2021.
Colección:ISSN
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Advances in Imaging and Electron Physics
  • Copyright
  • Contents
  • Contributors
  • Preface
  • 1 Introduction to strain characterization methods in Transmission Electron Microscopy
  • 1 Direct strain characterization methods
  • 1.1 Origin of direct strain characterization in a TEM
  • 1.2 Quantitative characterization of strain as a property of matter
  • 1.3 Development of direct strain characterization techniques
  • 1.3.1 Peak position fitting methods
  • 1.3.2 Geometric Phase Analysis (GPA) approach
  • 1.3.3 From CTEM to STEM strain characterization
  • 1.4 Inherent limit of direct strain characterization method
  • 2 Indirect strain characterization methods
  • 2.1 Nano Beam Electron (Precession) Electron Diffraction (NB(P)ED)
  • 2.2 Interferometry
  • 2.2.1 Dark-Field Electron Holograhy (DFEH)
  • 2.2.2 Scanning Moir�e Fringes (SMF)
  • 3 Conclusions of the chapter
  • References
  • 2 Moir�e sampling in Scanning Transmission Electron Microscopy
  • 1 Signal sampling and recovery
  • 1.1 Discrete evaluation of a continuous function
  • 1.2 Recovery of a bandwidth limited function
  • 1.2.1 Lossless recovery (oversampling)
  • 1.2.2 Compressed sensing recovery
  • 1.3 Recovery of an undersampled sparse periodic bandwidth limited function
  • 1.3.1 Recovery of an undersampled sine function
  • Undersampling recovery using uniform sampling and prior knowledge on the periodicity of the function being sampled
  • Undersampling recovery using uniform sampling from two different samplers
  • 1.3.2 Generalization for sparse periodic bandwidth limited functions
  • 1.3.3 Moir�e sampling recovery theorem
  • 2 Sampling in STEM
  • 2.1 2D sampling of a single crystal material
  • 2.1.1 Unstrained crystal
  • 2.1.2 Strained crystal
  • 2.2 High Resolution STEM imaging
  • 2.3 STEM Moir�e interferometry (STEM Moir�e sampling).
  • 3 Recovery of the crystal lattices from a STEM Moir�e hologram
  • 3.1 STEM Moir�e hologram formation in Fourier space
  • 3.2 Consideration of strain and sparsity
  • 3.3 Determination of the sampling vectors for each Moir�e wave vector
  • 3.4 Application of the recovery process
  • 4 Conclusions of the chapter
  • References
  • 3 Scanning Transmission Electron Microscopy Moir�e sampling Geometrical Phase Analysis (STEM Moir�e GPA)
  • 1 Introduction of STEM Moir�e GPA
  • 1.1 2D strain field from a STEM Moir�e hologram
  • 1.2 Implementation of STEM Moir�e GPA
  • 1.2.1 Sampling matrix determination
  • 1.2.2 External inputs
  • Isolation of two noncollinear Moir�e reflection
  • Selection of the unstrained region
  • Moir�e to crystal conversion and 2D strain tensor calculation
  • 1.2.3 Calibration independent implementation
  • 2 Materials and methods
  • 2.1 Calibration sample
  • 2.2 Sample preparation
  • 2.3 Sample observation
  • 2.3.1 HR-STEM
  • 2.3.2 STEM Moir�e interferometry
  • 2.4 Processing methods
  • 2.4.1 Geometrical Phase Analysis
  • 2.4.2 STEM Moir�e GPA
  • 3 Strain characterization results on the calibrated sample
  • 3.1 HR-STEM GPA
  • 3.2 GPA on reconstructed electron micrograph (REC-GPA)
  • 3.3 SMG
  • 3.4 Discussion
  • 4 Experimental considerations of STEM Moir�e GPA
  • 4.1 Effect of the pixel spacing
  • 4.1.1 Simulation of the Moir�e reflection position with pixel spacing
  • 4.1.2 Experimental assessment of the Moir�e reflection position simulation with pixel spacing
  • 4.2 Effect of the scanning rotation
  • 4.2.1 Simulation of the Moir�e reflection position with scanning rotation
  • 4.2.2 Experimental assessment of the Moir�e reflection position simulation with scanning rotation
  • 4.3 Constraints from GPA
  • 4.4 Design of the SMG experimental protocol
  • 5 Application of the SMG protocol on the calibration sample.
  • 5.1 Determination of suitable sampling ranges
  • 5.2 Comparison of SMG results using different sampling parameters
  • 5.3 Discussion
  • 6 Conclusions of the chapter
  • 3.A Analytical bi-axial fully strained model
  • 3.A.1 Bi-axial fully strained model and Hook's law
  • 3.A.2 Expression of the strain tensor with the lattice mismatch
  • 3.A.3 Transformation from base B0 to B1
  • 3.A.4 Hook's law in the base B1
  • References
  • 4 Performance of Scanning Transmission Electron Microscopy Moir�e Sampling Geometrical Phase Analysis
  • 1 Qualitative assessment of accuracy
  • 1.1 SMG comparison with Dark-Field Electron Holography (DFEH)
  • 1.1.1 Methods
  • 1.1.2 Processing
  • 1.1.3 Results
  • 1.1.4 Comparison with SMG
  • 1.2 FEM strain distribution simulation
  • 1.2.1 System of differential equations
  • 1.2.2 Geometry and boundary conditions
  • 1.2.3 Implementation
  • 1.2.4 FEM simulations results
  • Geometry consideration
  • Strain relaxation in a TEM lamella
  • Effect of thickness in the strain distribution
  • 1.2.5 FEM mechanical simulation summary
  • 1.3 Comparison between FEM simulation and experimental results
  • 1.4 Conclusions on the SMG accuracy
  • 2 Qualitative assessment of resolution and precision
  • 2.1 Link between resolution and precision in GPA
  • 2.1.1 Theoretical description
  • 2.1.2 Consideration of noise
  • 2.2 Application to SMG
  • 2.2.1 Effect of sampling on precision
  • 2.2.2 Noise vs FOV
  • 2.3 Conclusions on the resolution and precision of SMG
  • 3 Limits of STEM Moir�e GPA
  • 3.1 Theoretical limits
  • 3.2 Practical limits
  • 3.2.1 Aberrations
  • 3.2.2 Sample drift
  • 3.2.3 Illadapted sampling parameters
  • 4 Conclusions of the chapter
  • References
  • 5 Applications of Scanning Transmission Electron Microscopy Moir�e Sampling Geometrical Phase Analysis
  • 1 Basic application of SMG
  • 1.1 Materials
  • 1.2 HR-STEM GPA.
  • 1.3 STEM Moir�e GPA
  • 1.4 Qualitative STEM Moir�e interferometry
  • 2 Strategic application of SMG
  • 2.1 Materials
  • 2.2 Large FOV SMG strain maps to maximize sensitivity
  • 2.3 Strategy to limit the contribution of the periodic patterned noise
  • 3 Conclusions of the chapter
  • References
  • 6 Quasi-analytical modelling of charged particle ensembles in neutral gas flow and electric fields
  • 1 Introduction and the problem statement
  • 2 The case of constant velocities
  • 3 The case of variable velocities
  • 4 Numerical experiments
  • 5 Space charge contribution
  • 6 Conclusion
  • References
  • 7 Superconducting electron lenses
  • 1 Introduction
  • 2 Superconducting materials
  • 2.1 General properties
  • 2.1.1 Type I superconductors
  • 2.1.2 Type II superconductors
  • 2.2 High field, high current superconductors
  • 2.2.1 Steady state properties
  • 2.2.2 Instabilities
  • 2.2.3 Further comments
  • 3 The design of magnetic electron lenses
  • 3.1 General principles
  • 3.1.1 Limitations of conventional lenses
  • 3.1.2 Potential advantages of the use of superconducting materials
  • 3.2 Assessment of objective lens designs
  • 4 Superconducting electron lenses
  • 4.1 Lenses without pole pieces
  • 4.1.1 Simple solenoids
  • 4.1.2 Iron-shrouded solenoids
  • 4.1.3 ``Trapped flux'' lenses
  • 4.2 Lenses with pole pieces
  • 4.2.1 Iron pole pieces
  • 4.2.2 Rare earth metal pole pieces
  • 4.2.3 Diamagnetic ``flux shields''
  • 5 Conclusions
  • 5.1 Future prospects in electron microscopy
  • Acknowledgments
  • References
  • 8 Lorentz microscopy or electron phase microscopy of magnetic objects
  • 1 General introduction
  • 1.1 Aims of this chapter
  • 1.2 Notions of resolution
  • 1.3 Notions of image formation
  • 2 The interaction of an electron with a magnetic field
  • 2.1 The classical Lorentz force
  • 2.2 The semi-classical approximation to the Schr�odinger equation.
  • 2.3 The magnetic phase object
  • 2.4 The Aharanov and Bohm effect
  • 2.4.1 Interference fringes in domain wall images
  • 2.4.2 Fraunhofer diffraction images from periodic magnetic structures
  • 2.4.3 Fraunhofer diffraction from a discontinuous film
  • 3 Calculation of the image intensity
  • 3.1 The Huygens-Fresnel principle
  • 3.2 Kirchhoff diffraction integral
  • 3.3 The diffraction theory
  • 3.4 Fraunhofer and Fresnel diffraction
  • 3.5 The stationary phase approximation to the diffraction integral
  • 3.6 The classical intensity
  • 3.7 Comparison of different results
  • 3.8 Reduced parameters in the image intensity equations
  • 4 Validity criteria for the pseudo-classical approximations
  • 4.1 Generalities on the correspondence limits of wave optics and wave mechanics
  • 4.2 The fluxon criterion
  • 4.3 The generalized criterion
  • 4.3.1 Applications to isolated objects
  • 4.3.2 Applications to periodic objects
  • 4.4 Physical manifestations of the fluxon
  • 4.4.1 Fresnel images from domain walls
  • 4.4.2 Fresnel images of periodic structures
  • 4.4.3 Fraunhofer images of periodic structures
  • 5 Image transfer theory
  • 5.1 Basic theory
  • 5.2 Application to small deflections
  • 5.3 Magnetization ripple
  • 6 Remarks on domain wall measurements
  • 7 Conclusions
  • Acknowledgments
  • References
  • Index
  • Back Cover.