|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1265524132 |
003 |
OCoLC |
005 |
20231120010602.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
210829s2021 xx o 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d OPELS
|d OCLCO
|d OCLCF
|d UKMGB
|d UKAHL
|d OCLCO
|d OCLCQ
|d SFB
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBC196017
|2 bnb
|
016 |
7 |
|
|a 020226229
|2 Uk
|
020 |
|
|
|a 9780323850971
|q (electronic bk.)
|
020 |
|
|
|a 0323850979
|q (electronic bk.)
|
020 |
|
|
|z 9780128246122
|
020 |
|
|
|z 012824612X
|
035 |
|
|
|a (OCoLC)1265524132
|
050 |
|
4 |
|a QC793.5
|b .A48 2021eb
|
082 |
0 |
4 |
|a 537.5
|2 23
|
245 |
0 |
0 |
|a Advances in imaging and electron physics.
|n Volume 219 /
|c Edited by Martin H�ytch, Peter W. Hawkes.
|
260 |
|
|
|a [Place of publication not identified] :
|b Academic Press,
|c 2021.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
0 |
|
|a ISSN
|
505 |
0 |
|
|a Front Cover -- Advances in Imaging and Electron Physics -- Copyright -- Contents -- Contributors -- Preface -- 1 Introduction to strain characterization methods in Transmission Electron Microscopy -- 1 Direct strain characterization methods -- 1.1 Origin of direct strain characterization in a TEM -- 1.2 Quantitative characterization of strain as a property of matter -- 1.3 Development of direct strain characterization techniques -- 1.3.1 Peak position fitting methods -- 1.3.2 Geometric Phase Analysis (GPA) approach -- 1.3.3 From CTEM to STEM strain characterization -- 1.4 Inherent limit of direct strain characterization method -- 2 Indirect strain characterization methods -- 2.1 Nano Beam Electron (Precession) Electron Diffraction (NB(P)ED) -- 2.2 Interferometry -- 2.2.1 Dark-Field Electron Holograhy (DFEH) -- 2.2.2 Scanning Moir�e Fringes (SMF) -- 3 Conclusions of the chapter -- References -- 2 Moir�e sampling in Scanning Transmission Electron Microscopy -- 1 Signal sampling and recovery -- 1.1 Discrete evaluation of a continuous function -- 1.2 Recovery of a bandwidth limited function -- 1.2.1 Lossless recovery (oversampling) -- 1.2.2 Compressed sensing recovery -- 1.3 Recovery of an undersampled sparse periodic bandwidth limited function -- 1.3.1 Recovery of an undersampled sine function -- Undersampling recovery using uniform sampling and prior knowledge on the periodicity of the function being sampled -- Undersampling recovery using uniform sampling from two different samplers -- 1.3.2 Generalization for sparse periodic bandwidth limited functions -- 1.3.3 Moir�e sampling recovery theorem -- 2 Sampling in STEM -- 2.1 2D sampling of a single crystal material -- 2.1.1 Unstrained crystal -- 2.1.2 Strained crystal -- 2.2 High Resolution STEM imaging -- 2.3 STEM Moir�e interferometry (STEM Moir�e sampling).
|
505 |
8 |
|
|a 3 Recovery of the crystal lattices from a STEM Moir�e hologram -- 3.1 STEM Moir�e hologram formation in Fourier space -- 3.2 Consideration of strain and sparsity -- 3.3 Determination of the sampling vectors for each Moir�e wave vector -- 3.4 Application of the recovery process -- 4 Conclusions of the chapter -- References -- 3 Scanning Transmission Electron Microscopy Moir�e sampling Geometrical Phase Analysis (STEM Moir�e GPA) -- 1 Introduction of STEM Moir�e GPA -- 1.1 2D strain field from a STEM Moir�e hologram -- 1.2 Implementation of STEM Moir�e GPA -- 1.2.1 Sampling matrix determination -- 1.2.2 External inputs -- Isolation of two noncollinear Moir�e reflection -- Selection of the unstrained region -- Moir�e to crystal conversion and 2D strain tensor calculation -- 1.2.3 Calibration independent implementation -- 2 Materials and methods -- 2.1 Calibration sample -- 2.2 Sample preparation -- 2.3 Sample observation -- 2.3.1 HR-STEM -- 2.3.2 STEM Moir�e interferometry -- 2.4 Processing methods -- 2.4.1 Geometrical Phase Analysis -- 2.4.2 STEM Moir�e GPA -- 3 Strain characterization results on the calibrated sample -- 3.1 HR-STEM GPA -- 3.2 GPA on reconstructed electron micrograph (REC-GPA) -- 3.3 SMG -- 3.4 Discussion -- 4 Experimental considerations of STEM Moir�e GPA -- 4.1 Effect of the pixel spacing -- 4.1.1 Simulation of the Moir�e reflection position with pixel spacing -- 4.1.2 Experimental assessment of the Moir�e reflection position simulation with pixel spacing -- 4.2 Effect of the scanning rotation -- 4.2.1 Simulation of the Moir�e reflection position with scanning rotation -- 4.2.2 Experimental assessment of the Moir�e reflection position simulation with scanning rotation -- 4.3 Constraints from GPA -- 4.4 Design of the SMG experimental protocol -- 5 Application of the SMG protocol on the calibration sample.
|
505 |
8 |
|
|a 5.1 Determination of suitable sampling ranges -- 5.2 Comparison of SMG results using different sampling parameters -- 5.3 Discussion -- 6 Conclusions of the chapter -- 3.A Analytical bi-axial fully strained model -- 3.A.1 Bi-axial fully strained model and Hook's law -- 3.A.2 Expression of the strain tensor with the lattice mismatch -- 3.A.3 Transformation from base B0 to B1 -- 3.A.4 Hook's law in the base B1 -- References -- 4 Performance of Scanning Transmission Electron Microscopy Moir�e Sampling Geometrical Phase Analysis -- 1 Qualitative assessment of accuracy -- 1.1 SMG comparison with Dark-Field Electron Holography (DFEH) -- 1.1.1 Methods -- 1.1.2 Processing -- 1.1.3 Results -- 1.1.4 Comparison with SMG -- 1.2 FEM strain distribution simulation -- 1.2.1 System of differential equations -- 1.2.2 Geometry and boundary conditions -- 1.2.3 Implementation -- 1.2.4 FEM simulations results -- Geometry consideration -- Strain relaxation in a TEM lamella -- Effect of thickness in the strain distribution -- 1.2.5 FEM mechanical simulation summary -- 1.3 Comparison between FEM simulation and experimental results -- 1.4 Conclusions on the SMG accuracy -- 2 Qualitative assessment of resolution and precision -- 2.1 Link between resolution and precision in GPA -- 2.1.1 Theoretical description -- 2.1.2 Consideration of noise -- 2.2 Application to SMG -- 2.2.1 Effect of sampling on precision -- 2.2.2 Noise vs FOV -- 2.3 Conclusions on the resolution and precision of SMG -- 3 Limits of STEM Moir�e GPA -- 3.1 Theoretical limits -- 3.2 Practical limits -- 3.2.1 Aberrations -- 3.2.2 Sample drift -- 3.2.3 Illadapted sampling parameters -- 4 Conclusions of the chapter -- References -- 5 Applications of Scanning Transmission Electron Microscopy Moir�e Sampling Geometrical Phase Analysis -- 1 Basic application of SMG -- 1.1 Materials -- 1.2 HR-STEM GPA.
|
505 |
8 |
|
|a 1.3 STEM Moir�e GPA -- 1.4 Qualitative STEM Moir�e interferometry -- 2 Strategic application of SMG -- 2.1 Materials -- 2.2 Large FOV SMG strain maps to maximize sensitivity -- 2.3 Strategy to limit the contribution of the periodic patterned noise -- 3 Conclusions of the chapter -- References -- 6 Quasi-analytical modelling of charged particle ensembles in neutral gas flow and electric fields -- 1 Introduction and the problem statement -- 2 The case of constant velocities -- 3 The case of variable velocities -- 4 Numerical experiments -- 5 Space charge contribution -- 6 Conclusion -- References -- 7 Superconducting electron lenses -- 1 Introduction -- 2 Superconducting materials -- 2.1 General properties -- 2.1.1 Type I superconductors -- 2.1.2 Type II superconductors -- 2.2 High field, high current superconductors -- 2.2.1 Steady state properties -- 2.2.2 Instabilities -- 2.2.3 Further comments -- 3 The design of magnetic electron lenses -- 3.1 General principles -- 3.1.1 Limitations of conventional lenses -- 3.1.2 Potential advantages of the use of superconducting materials -- 3.2 Assessment of objective lens designs -- 4 Superconducting electron lenses -- 4.1 Lenses without pole pieces -- 4.1.1 Simple solenoids -- 4.1.2 Iron-shrouded solenoids -- 4.1.3 ``Trapped flux'' lenses -- 4.2 Lenses with pole pieces -- 4.2.1 Iron pole pieces -- 4.2.2 Rare earth metal pole pieces -- 4.2.3 Diamagnetic ``flux shields'' -- 5 Conclusions -- 5.1 Future prospects in electron microscopy -- Acknowledgments -- References -- 8 Lorentz microscopy or electron phase microscopy of magnetic objects -- 1 General introduction -- 1.1 Aims of this chapter -- 1.2 Notions of resolution -- 1.3 Notions of image formation -- 2 The interaction of an electron with a magnetic field -- 2.1 The classical Lorentz force -- 2.2 The semi-classical approximation to the Schr�odinger equation.
|
505 |
8 |
|
|a 2.3 The magnetic phase object -- 2.4 The Aharanov and Bohm effect -- 2.4.1 Interference fringes in domain wall images -- 2.4.2 Fraunhofer diffraction images from periodic magnetic structures -- 2.4.3 Fraunhofer diffraction from a discontinuous film -- 3 Calculation of the image intensity -- 3.1 The Huygens-Fresnel principle -- 3.2 Kirchhoff diffraction integral -- 3.3 The diffraction theory -- 3.4 Fraunhofer and Fresnel diffraction -- 3.5 The stationary phase approximation to the diffraction integral -- 3.6 The classical intensity -- 3.7 Comparison of different results -- 3.8 Reduced parameters in the image intensity equations -- 4 Validity criteria for the pseudo-classical approximations -- 4.1 Generalities on the correspondence limits of wave optics and wave mechanics -- 4.2 The fluxon criterion -- 4.3 The generalized criterion -- 4.3.1 Applications to isolated objects -- 4.3.2 Applications to periodic objects -- 4.4 Physical manifestations of the fluxon -- 4.4.1 Fresnel images from domain walls -- 4.4.2 Fresnel images of periodic structures -- 4.4.3 Fraunhofer images of periodic structures -- 5 Image transfer theory -- 5.1 Basic theory -- 5.2 Application to small deflections -- 5.3 Magnetization ripple -- 6 Remarks on domain wall measurements -- 7 Conclusions -- Acknowledgments -- References -- Index -- Back Cover.
|
650 |
|
0 |
|a Electrons.
|
650 |
|
0 |
|a Optoelectronic devices.
|
650 |
|
0 |
|a Optical data processing.
|
650 |
|
0 |
|a Image processing.
|
650 |
|
2 |
|a Electrons
|0 (DNLM)D004583
|
650 |
|
6 |
|a �Electrons.
|0 (CaQQLa)201-0004714
|
650 |
|
6 |
|a Dispositifs opto�electroniques.
|0 (CaQQLa)201-0012482
|
650 |
|
6 |
|a Traitement optique de l'information.
|0 (CaQQLa)201-0023313
|
650 |
|
6 |
|a Traitement d'images.
|0 (CaQQLa)201-0029952
|
650 |
|
7 |
|a image processing.
|2 aat
|0 (CStmoGRI)aat300237864
|
650 |
|
7 |
|a Electrons
|2 fast
|0 (OCoLC)fst00907642
|
650 |
|
7 |
|a Image processing
|2 fast
|0 (OCoLC)fst00967501
|
650 |
|
7 |
|a Optical data processing
|2 fast
|0 (OCoLC)fst01046675
|
650 |
|
7 |
|a Optoelectronic devices
|2 fast
|0 (OCoLC)fst01046908
|
700 |
1 |
|
|a H�ytch, Martin.
|
700 |
1 |
|
|a Hawkes, P. W.
|
776 |
0 |
8 |
|i Print version:
|t Advances in imaging and electron physics. Volume 219.
|d [Place of publication not identified] : Academic Press, 2021
|z 012824612X
|z 9780128246122
|w (OCoLC)1231958300
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/bookseries/10765670/219
|z Texto completo
|