Cellulose nanocrystal/nanoparticles hybrid nanocomposites : from preparation to applications /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Woodhead Publishing,
2021.
|
Colección: | Woodhead Publishing series in composites science and engineering.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Cellulose Nanocrystal/Nanoparticles Hybrid Nanocomposites: From Preparation to Applications
- Copyright
- Contents
- Contributors
- Chapter 1: Cellulose nanocrystal/nanoparticles hybrid nanocomposites: From preparation to applications
- 1.1. Introduction
- 1.2. Cellulose nanocrystal: Structure, source, and properties
- 1.3. Production of cellulose nanocrystals
- 1.4. Cellulose nanocrystal/nanoparticles hybrid nanocomposites
- 1.5. Conclusion
- References
- Chapter 2: Characterization techniques for hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and nanopart ...
- 2.1. Introduction
- 2.2. Cellulose: Chemical structure, properties, and application
- 2.3. Characterization of cellulose-based hybrid nanocomposites
- 2.3.1. Structural characterization
- 2.3.1.1. Fourier transform infrared (FTIR)
- 2.3.1.2. Raman spectroscopy
- 2.3.1.3. X-ray photoelectron spectroscopy (XPS)
- 2.3.1.4. UV-Vis spectroscopy
- 2.3.1.5. Nuclear magnetic resonance (NMR)
- 2.3.1.6. X-ray diffraction (XRD)
- 2.3.2. Morphological characterization
- 2.3.2.1. Scanning electron microscopy (SEM)
- 2.3.2.2. Atomic force microscopy (AFM)
- 2.3.2.3. Transmission electron microscopy (TEM)
- 2.3.3. Thermal properties
- 2.3.3.1. Thermogravimetric analysis (TGA)
- 2.3.3.2. Differential scanning calorimetry (DSC)
- 2.3.4. Mechanical properties
- 2.3.5. Dynamic mechanical analysis (DMA)
- 2.4. Conclusion
- References
- Chapter 3: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and carbon nanotubes: From preparation to ap ...
- 3.1. Introduction
- 3.2. Thermoplastic polyurethanes
- 3.3. Flexible sensors
- 3.4. Adsorption
- 3.5. Optoelectronic applications
- 3.6. Wearable electronic devices
- 3.7. Supercapacitors
- 3.8. Soy proteins reinforcement
- 3.9. Conclusion
- References.
- Chapter 4: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and silver nanoparticles: Antibacterial appl ...
- 4.1. Introduction
- 4.1.1. Nanocellulose from ligno-cellulosic materials
- 4.1.2. Bacterial cellulose
- 4.2. Antibacterial properties of nanosilver
- 4.3. Application of nanosilver on nanocellulose
- 4.4. Novel preparation methods for improved biocompatibility
- 4.5. Conclusions
- References
- Chapter 5: Hybrid materials from cellulose nanocrystals for wastewater treatment
- 5.1. Introduction
- 5.2. Cellulose nanocrystals generalities: From synthesis to application as a potential adsorbent in wastewater treatment ...
- 5.2.1. Synthesis, structure, and morphology
- 5.2.2. Cellulose nanocrystals as a potential adsorbent in wastewater treatment
- 5.3. Hybrid materials from cellulose nanocrystals for wastewater treatment
- 5.3.1. CNC/polymer hybrid materials
- 5.3.2. CNC/metal or metal oxide hybrid materials
- 5.3.3. CNC/magnetic hybrid materials
- 5.3.4. CNC/carbonaceous hybrid materials
- 5.4. Conclusion
- References
- Chapter 6: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and titanium oxide: Wastewater treatment
- 6.1. Introduction
- 6.2. Characterization of nanocellulose (cellulose nanocrystals and cellulose nanofibrils)
- 6.3. Treatment of contaminated water with nanocellulose/nanocellulose based nanohybrid composites
- 6.4. Removal of oil from waste water
- 6.4.1. Removal of drugs with cellulose nanohybrid fibrils
- 6.4.2. Separation processes and wastewater treatment
- 6.4.3. Cellulose nanomaterials in membranes for waste water treatment
- 6.4.4. TiO2 photocatalysts for waste water treatment
- 6.4.5. Methods for the synthesis of TiO2
- 6.4.6. Application of TiO2-composite material in the wastewater treatment
- 6.4.7. Photocatalytic reactions using TiO2/TiO2-composite.
- 6.5. Conclusions
- Acknowledgments
- References
- Chapter 7: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and zinc oxides: Energy applications
- 7.1. Cellulose and derivatives from renewable sources
- 7.2. Types of cellulose
- 7.2.1. Cellulose nanofibrils (CNF)
- 7.2.2. Cellulose nanocrystals (CNC)
- 7.2.3. Bacterial nanocellulose (BNC)
- 7.3. Metal oxide-based cellulose nanohybrid composites
- 7.3.1. Zinc-oxide based cellulose hybrid nanocomposite
- 7.3.2. Synthesis methods and surface modification
- 7.3.3. Cellulose/ZnO energy and sensing properties
- 7.4. Cellulose-based composites for energy applications
- 7.4.1. State of art
- 7.4.2. Cellulose-based material for energy conversion
- 7.4.2.1. Organic photovoltaics (OPV)
- 7.4.2.2. Nanocellulose-based paper substrate for solar cell development
- 7.4.2.3. CNF-templated mesoporous structure as solar cell electrodes
- 7.4.2.4. Cellulose in photoelectrochemical (PEC) cell development
- 7.5. Cellulose for energy storage
- 7.5.1. Cellulose in sodium-ion battery (SIB)
- 7.5.2. Cellulose-based lithium-ion batteries (LIB)
- 7.5.2.1. Cellulose-based binders for LIB
- 7.5.2.2. Cellulose-based separators for LIB
- 7.5.2.3. Cellulose-based electrolyte for LIB
- 7.5.3. Supercapacitors
- 7.5.3.1. Nanocellulose as substrate materials for paper supercapacitors
- 7.5.4. Cellulose as electrodes for pseudo-capacitors
- 7.5.5. Cellulose nanomaterials for nanogenerator developments
- 7.5.5.1. Cellulose nanostructure-based triboelectric nanogenerators
- 7.5.5.2. Cellulose-based piezoelectric nanogenerators
- 7.6. Summary
- References
- Chapter 8: Cellulose nanocrystal (CNC): Inorganic hybrid nanocomposites
- 8.1. Introduction
- 8.2. Cellulose nanocrystals
- 8.2.1. General overview on the chemistry and properties of cellulose.
- 8.2.2. Extraction techniques of cellulose nanocrystals
- 8.3. Cellulose nanocrystals: Inorganic hybrid nanocomposites
- 8.3.1. Synthesis of cellulose-inorganic hybrid nanocomposites
- 8.3.1.1. Coprecipitation process
- 8.3.1.2. Sol-gel processing
- 8.3.1.3. Pickering emulsion synthesis
- 8.3.1.4. Hydrothermal/solvothermal processing
- 8.3.2. Characterization of cellulose-inorganic hybrid nanocomposites
- 8.3.2.1. Cellulose-silica nanoparticles hybrid nanocomposites
- 8.3.2.2. Cellulose-gold nanoparticles hybrid nanocomposites
- 8.3.2.3. Cellulose-silver nanoparticles hybrid nanocomposites
- 8.3.2.4. Cellulose-palladium nanoparticles hybrid nanocomposites
- 8.3.2.5. Cellulose-metal oxide nanoparticles hybrid nanocomposites
- 8.3.3. Cellulose-inorganic hybrid nanocomposites applications
- 8.4. Conclusion
- References
- Chapter 9: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils with graphene and its derivatives: From prep ...
- 9.1. Introduction
- 9.2. Cellulose based nanocrystals/nanofibrils
- 9.3. Graphene based composites
- 9.4. Nanocomposites of cellulose nanocrystals/nanofibrils with graphene and its derivatives
- 9.5. Solution intercalation
- 9.6. Melt intercalation
- 9.7. In situ polymerization
- 9.8. Applications
- 9.9. Conclusion
- Reference
- Chapter 10: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils: From preparation to applications
- 10.1. Introduction to cellulose-based composites
- 10.2. Materials and methods
- 10.2.1. Materials
- 10.2.1.1. Preparation of nanocellulose fiber from sugarcane bagasse
- 10.2.1.2. Synthesis of Al-SiC nanoparticles
- 10.2.1.3. Polyester composites fabrication
- 10.2.2. Characterization
- 10.3. Results and discussion
- 10.3.1. Characteristic curves
- 10.3.2. Mechanical properties
- 10.3.3. Viscoelastic properties.
- 10.3.4. Thermal stability
- 10.4. Applications of polyester hybrid composites
- 10.5. Conclusion
- Acknowledgment
- References
- Chapter 11: Mechanical modeling of hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and nanoparticles
- 11.1. Introduction
- 11.2. Nanocomposites reinforcement
- 11.2.1. Nano-reinforcements classification
- 11.2.1.1. 3D geometry reinforcement
- 11.2.1.2. 2D geometry reinforcement
- 11.2.1.3. 1D geometry reinforcement
- 11.2.2. Nanocomposites based on cellulose reinforcement
- 11.2.2.1. Cellulose classification
- Cellulose nanofibers (CNF)
- Cellulose nanocrystals (CNC)
- Cellulose hairy nanocrystals (CHNC)
- 11.2.2.2. Effects of nanocellulose on polymer mechanical properties
- Fiber aspect ratio
- Fiber volume fraction
- Fiber orientation
- Fiber dispersion
- Fiber/matrix adhesion
- Type of the fibers
- 11.3. Cellulose based hybrid nanocomposites materials
- 11.3.1. Manufacturing methods
- 11.3.1.1. Solution casting technique
- 11.3.1.2. In situ technique
- 11.3.1.3. Melt blending technique
- 11.3.2. Hybrid nanocomposites mechanical properties
- 11.3.2.1. Polymer hybrid nanocomposites based on cellulose/inorganic materials
- 11.3.2.2. Polymer hybrid nanocomposites based on cellulose/metallic materials
- 11.3.2.3. Polymer hybrid nanocomposites based on cellulose/carbon allotropes
- 11.4. Mechanical modeling of hybrid nanocomposites based on cellulose
- 11.4.1. Phenomenological models
- 11.4.2. Homogenization models
- 11.4.2.1. Voigt and Reuss limiting cases
- 11.4.2.2. Eshelby approach
- Homogeneous inclusion of Eshelby
- Heterogeneous inclusion of Eshelby
- 11.4.2.3. Self-consistent model
- 11.5. Conclusion
- References
- Index.