Cargando…

Cellulose nanocrystal/nanoparticles hybrid nanocomposites : from preparation to applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Rodrigue, Denis, Qaiss, Abou el Kacem, Bouhfid, Rachid
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Woodhead Publishing, 2021.
Colección:Woodhead Publishing series in composites science and engineering.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Cellulose Nanocrystal/Nanoparticles Hybrid Nanocomposites: From Preparation to Applications
  • Copyright
  • Contents
  • Contributors
  • Chapter 1: Cellulose nanocrystal/nanoparticles hybrid nanocomposites: From preparation to applications
  • 1.1. Introduction
  • 1.2. Cellulose nanocrystal: Structure, source, and properties
  • 1.3. Production of cellulose nanocrystals
  • 1.4. Cellulose nanocrystal/nanoparticles hybrid nanocomposites
  • 1.5. Conclusion
  • References
  • Chapter 2: Characterization techniques for hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and nanopart ...
  • 2.1. Introduction
  • 2.2. Cellulose: Chemical structure, properties, and application
  • 2.3. Characterization of cellulose-based hybrid nanocomposites
  • 2.3.1. Structural characterization
  • 2.3.1.1. Fourier transform infrared (FTIR)
  • 2.3.1.2. Raman spectroscopy
  • 2.3.1.3. X-ray photoelectron spectroscopy (XPS)
  • 2.3.1.4. UV-Vis spectroscopy
  • 2.3.1.5. Nuclear magnetic resonance (NMR)
  • 2.3.1.6. X-ray diffraction (XRD)
  • 2.3.2. Morphological characterization
  • 2.3.2.1. Scanning electron microscopy (SEM)
  • 2.3.2.2. Atomic force microscopy (AFM)
  • 2.3.2.3. Transmission electron microscopy (TEM)
  • 2.3.3. Thermal properties
  • 2.3.3.1. Thermogravimetric analysis (TGA)
  • 2.3.3.2. Differential scanning calorimetry (DSC)
  • 2.3.4. Mechanical properties
  • 2.3.5. Dynamic mechanical analysis (DMA)
  • 2.4. Conclusion
  • References
  • Chapter 3: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and carbon nanotubes: From preparation to ap ...
  • 3.1. Introduction
  • 3.2. Thermoplastic polyurethanes
  • 3.3. Flexible sensors
  • 3.4. Adsorption
  • 3.5. Optoelectronic applications
  • 3.6. Wearable electronic devices
  • 3.7. Supercapacitors
  • 3.8. Soy proteins reinforcement
  • 3.9. Conclusion
  • References.
  • Chapter 4: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and silver nanoparticles: Antibacterial appl ...
  • 4.1. Introduction
  • 4.1.1. Nanocellulose from ligno-cellulosic materials
  • 4.1.2. Bacterial cellulose
  • 4.2. Antibacterial properties of nanosilver
  • 4.3. Application of nanosilver on nanocellulose
  • 4.4. Novel preparation methods for improved biocompatibility
  • 4.5. Conclusions
  • References
  • Chapter 5: Hybrid materials from cellulose nanocrystals for wastewater treatment
  • 5.1. Introduction
  • 5.2. Cellulose nanocrystals generalities: From synthesis to application as a potential adsorbent in wastewater treatment ...
  • 5.2.1. Synthesis, structure, and morphology
  • 5.2.2. Cellulose nanocrystals as a potential adsorbent in wastewater treatment
  • 5.3. Hybrid materials from cellulose nanocrystals for wastewater treatment
  • 5.3.1. CNC/polymer hybrid materials
  • 5.3.2. CNC/metal or metal oxide hybrid materials
  • 5.3.3. CNC/magnetic hybrid materials
  • 5.3.4. CNC/carbonaceous hybrid materials
  • 5.4. Conclusion
  • References
  • Chapter 6: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and titanium oxide: Wastewater treatment
  • 6.1. Introduction
  • 6.2. Characterization of nanocellulose (cellulose nanocrystals and cellulose nanofibrils)
  • 6.3. Treatment of contaminated water with nanocellulose/nanocellulose based nanohybrid composites
  • 6.4. Removal of oil from waste water
  • 6.4.1. Removal of drugs with cellulose nanohybrid fibrils
  • 6.4.2. Separation processes and wastewater treatment
  • 6.4.3. Cellulose nanomaterials in membranes for waste water treatment
  • 6.4.4. TiO2 photocatalysts for waste water treatment
  • 6.4.5. Methods for the synthesis of TiO2
  • 6.4.6. Application of TiO2-composite material in the wastewater treatment
  • 6.4.7. Photocatalytic reactions using TiO2/TiO2-composite.
  • 6.5. Conclusions
  • Acknowledgments
  • References
  • Chapter 7: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and zinc oxides: Energy applications
  • 7.1. Cellulose and derivatives from renewable sources
  • 7.2. Types of cellulose
  • 7.2.1. Cellulose nanofibrils (CNF)
  • 7.2.2. Cellulose nanocrystals (CNC)
  • 7.2.3. Bacterial nanocellulose (BNC)
  • 7.3. Metal oxide-based cellulose nanohybrid composites
  • 7.3.1. Zinc-oxide based cellulose hybrid nanocomposite
  • 7.3.2. Synthesis methods and surface modification
  • 7.3.3. Cellulose/ZnO energy and sensing properties
  • 7.4. Cellulose-based composites for energy applications
  • 7.4.1. State of art
  • 7.4.2. Cellulose-based material for energy conversion
  • 7.4.2.1. Organic photovoltaics (OPV)
  • 7.4.2.2. Nanocellulose-based paper substrate for solar cell development
  • 7.4.2.3. CNF-templated mesoporous structure as solar cell electrodes
  • 7.4.2.4. Cellulose in photoelectrochemical (PEC) cell development
  • 7.5. Cellulose for energy storage
  • 7.5.1. Cellulose in sodium-ion battery (SIB)
  • 7.5.2. Cellulose-based lithium-ion batteries (LIB)
  • 7.5.2.1. Cellulose-based binders for LIB
  • 7.5.2.2. Cellulose-based separators for LIB
  • 7.5.2.3. Cellulose-based electrolyte for LIB
  • 7.5.3. Supercapacitors
  • 7.5.3.1. Nanocellulose as substrate materials for paper supercapacitors
  • 7.5.4. Cellulose as electrodes for pseudo-capacitors
  • 7.5.5. Cellulose nanomaterials for nanogenerator developments
  • 7.5.5.1. Cellulose nanostructure-based triboelectric nanogenerators
  • 7.5.5.2. Cellulose-based piezoelectric nanogenerators
  • 7.6. Summary
  • References
  • Chapter 8: Cellulose nanocrystal (CNC): Inorganic hybrid nanocomposites
  • 8.1. Introduction
  • 8.2. Cellulose nanocrystals
  • 8.2.1. General overview on the chemistry and properties of cellulose.
  • 8.2.2. Extraction techniques of cellulose nanocrystals
  • 8.3. Cellulose nanocrystals: Inorganic hybrid nanocomposites
  • 8.3.1. Synthesis of cellulose-inorganic hybrid nanocomposites
  • 8.3.1.1. Coprecipitation process
  • 8.3.1.2. Sol-gel processing
  • 8.3.1.3. Pickering emulsion synthesis
  • 8.3.1.4. Hydrothermal/solvothermal processing
  • 8.3.2. Characterization of cellulose-inorganic hybrid nanocomposites
  • 8.3.2.1. Cellulose-silica nanoparticles hybrid nanocomposites
  • 8.3.2.2. Cellulose-gold nanoparticles hybrid nanocomposites
  • 8.3.2.3. Cellulose-silver nanoparticles hybrid nanocomposites
  • 8.3.2.4. Cellulose-palladium nanoparticles hybrid nanocomposites
  • 8.3.2.5. Cellulose-metal oxide nanoparticles hybrid nanocomposites
  • 8.3.3. Cellulose-inorganic hybrid nanocomposites applications
  • 8.4. Conclusion
  • References
  • Chapter 9: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils with graphene and its derivatives: From prep ...
  • 9.1. Introduction
  • 9.2. Cellulose based nanocrystals/nanofibrils
  • 9.3. Graphene based composites
  • 9.4. Nanocomposites of cellulose nanocrystals/nanofibrils with graphene and its derivatives
  • 9.5. Solution intercalation
  • 9.6. Melt intercalation
  • 9.7. In situ polymerization
  • 9.8. Applications
  • 9.9. Conclusion
  • Reference
  • Chapter 10: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils: From preparation to applications
  • 10.1. Introduction to cellulose-based composites
  • 10.2. Materials and methods
  • 10.2.1. Materials
  • 10.2.1.1. Preparation of nanocellulose fiber from sugarcane bagasse
  • 10.2.1.2. Synthesis of Al-SiC nanoparticles
  • 10.2.1.3. Polyester composites fabrication
  • 10.2.2. Characterization
  • 10.3. Results and discussion
  • 10.3.1. Characteristic curves
  • 10.3.2. Mechanical properties
  • 10.3.3. Viscoelastic properties.
  • 10.3.4. Thermal stability
  • 10.4. Applications of polyester hybrid composites
  • 10.5. Conclusion
  • Acknowledgment
  • References
  • Chapter 11: Mechanical modeling of hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and nanoparticles
  • 11.1. Introduction
  • 11.2. Nanocomposites reinforcement
  • 11.2.1. Nano-reinforcements classification
  • 11.2.1.1. 3D geometry reinforcement
  • 11.2.1.2. 2D geometry reinforcement
  • 11.2.1.3. 1D geometry reinforcement
  • 11.2.2. Nanocomposites based on cellulose reinforcement
  • 11.2.2.1. Cellulose classification
  • Cellulose nanofibers (CNF)
  • Cellulose nanocrystals (CNC)
  • Cellulose hairy nanocrystals (CHNC)
  • 11.2.2.2. Effects of nanocellulose on polymer mechanical properties
  • Fiber aspect ratio
  • Fiber volume fraction
  • Fiber orientation
  • Fiber dispersion
  • Fiber/matrix adhesion
  • Type of the fibers
  • 11.3. Cellulose based hybrid nanocomposites materials
  • 11.3.1. Manufacturing methods
  • 11.3.1.1. Solution casting technique
  • 11.3.1.2. In situ technique
  • 11.3.1.3. Melt blending technique
  • 11.3.2. Hybrid nanocomposites mechanical properties
  • 11.3.2.1. Polymer hybrid nanocomposites based on cellulose/inorganic materials
  • 11.3.2.2. Polymer hybrid nanocomposites based on cellulose/metallic materials
  • 11.3.2.3. Polymer hybrid nanocomposites based on cellulose/carbon allotropes
  • 11.4. Mechanical modeling of hybrid nanocomposites based on cellulose
  • 11.4.1. Phenomenological models
  • 11.4.2. Homogenization models
  • 11.4.2.1. Voigt and Reuss limiting cases
  • 11.4.2.2. Eshelby approach
  • Homogeneous inclusion of Eshelby
  • Heterogeneous inclusion of Eshelby
  • 11.4.2.3. Self-consistent model
  • 11.5. Conclusion
  • References
  • Index.