|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1265524104 |
003 |
OCoLC |
005 |
20231120010602.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
210829s2021 enk ob 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d OPELS
|d OCLCO
|d UKMGB
|d OCLCF
|d UKAHL
|d OCLCQ
|d AFU
|d OCLCO
|d K6U
|d SFB
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBC1B8942
|2 bnb
|
016 |
7 |
|
|a 020273282
|2 Uk
|
019 |
|
|
|a 1287269247
|a 1287875147
|
020 |
|
|
|a 9780128230909
|q (electronic bk.)
|
020 |
|
|
|a 0128230908
|q (electronic bk.)
|
020 |
|
|
|z 0128229063
|
020 |
|
|
|z 9780128229064
|
035 |
|
|
|a (OCoLC)1265524104
|z (OCoLC)1287269247
|z (OCoLC)1287875147
|
050 |
|
4 |
|a TA418.9.N35
|b C45 2021
|
082 |
0 |
4 |
|a 620.115
|2 23
|
245 |
0 |
0 |
|a Cellulose nanocrystal/nanoparticles hybrid nanocomposites :
|b from preparation to applications /
|c edited by Denis Rodrigue, Abou el Kacem Qaiss and Rachid Bouhfid.
|
264 |
|
1 |
|a London :
|b Woodhead Publishing,
|c 2021.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
336 |
|
|
|a still image
|b sti
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Woodhead Publishing series in composites science and engineering
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Intro -- Cellulose Nanocrystal/Nanoparticles Hybrid Nanocomposites: From Preparation to Applications -- Copyright -- Contents -- Contributors -- Chapter 1: Cellulose nanocrystal/nanoparticles hybrid nanocomposites: From preparation to applications -- 1.1. Introduction -- 1.2. Cellulose nanocrystal: Structure, source, and properties -- 1.3. Production of cellulose nanocrystals -- 1.4. Cellulose nanocrystal/nanoparticles hybrid nanocomposites -- 1.5. Conclusion -- References -- Chapter 2: Characterization techniques for hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and nanopart ... -- 2.1. Introduction -- 2.2. Cellulose: Chemical structure, properties, and application -- 2.3. Characterization of cellulose-based hybrid nanocomposites -- 2.3.1. Structural characterization -- 2.3.1.1. Fourier transform infrared (FTIR) -- 2.3.1.2. Raman spectroscopy -- 2.3.1.3. X-ray photoelectron spectroscopy (XPS) -- 2.3.1.4. UV-Vis spectroscopy -- 2.3.1.5. Nuclear magnetic resonance (NMR) -- 2.3.1.6. X-ray diffraction (XRD) -- 2.3.2. Morphological characterization -- 2.3.2.1. Scanning electron microscopy (SEM) -- 2.3.2.2. Atomic force microscopy (AFM) -- 2.3.2.3. Transmission electron microscopy (TEM) -- 2.3.3. Thermal properties -- 2.3.3.1. Thermogravimetric analysis (TGA) -- 2.3.3.2. Differential scanning calorimetry (DSC) -- 2.3.4. Mechanical properties -- 2.3.5. Dynamic mechanical analysis (DMA) -- 2.4. Conclusion -- References -- Chapter 3: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and carbon nanotubes: From preparation to ap ... -- 3.1. Introduction -- 3.2. Thermoplastic polyurethanes -- 3.3. Flexible sensors -- 3.4. Adsorption -- 3.5. Optoelectronic applications -- 3.6. Wearable electronic devices -- 3.7. Supercapacitors -- 3.8. Soy proteins reinforcement -- 3.9. Conclusion -- References.
|
505 |
8 |
|
|a Chapter 4: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and silver nanoparticles: Antibacterial appl ... -- 4.1. Introduction -- 4.1.1. Nanocellulose from ligno-cellulosic materials -- 4.1.2. Bacterial cellulose -- 4.2. Antibacterial properties of nanosilver -- 4.3. Application of nanosilver on nanocellulose -- 4.4. Novel preparation methods for improved biocompatibility -- 4.5. Conclusions -- References -- Chapter 5: Hybrid materials from cellulose nanocrystals for wastewater treatment -- 5.1. Introduction -- 5.2. Cellulose nanocrystals generalities: From synthesis to application as a potential adsorbent in wastewater treatment ... -- 5.2.1. Synthesis, structure, and morphology -- 5.2.2. Cellulose nanocrystals as a potential adsorbent in wastewater treatment -- 5.3. Hybrid materials from cellulose nanocrystals for wastewater treatment -- 5.3.1. CNC/polymer hybrid materials -- 5.3.2. CNC/metal or metal oxide hybrid materials -- 5.3.3. CNC/magnetic hybrid materials -- 5.3.4. CNC/carbonaceous hybrid materials -- 5.4. Conclusion -- References -- Chapter 6: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and titanium oxide: Wastewater treatment -- 6.1. Introduction -- 6.2. Characterization of nanocellulose (cellulose nanocrystals and cellulose nanofibrils) -- 6.3. Treatment of contaminated water with nanocellulose/nanocellulose based nanohybrid composites -- 6.4. Removal of oil from waste water -- 6.4.1. Removal of drugs with cellulose nanohybrid fibrils -- 6.4.2. Separation processes and wastewater treatment -- 6.4.3. Cellulose nanomaterials in membranes for waste water treatment -- 6.4.4. TiO2 photocatalysts for waste water treatment -- 6.4.5. Methods for the synthesis of TiO2 -- 6.4.6. Application of TiO2-composite material in the wastewater treatment -- 6.4.7. Photocatalytic reactions using TiO2/TiO2-composite.
|
505 |
8 |
|
|a 6.5. Conclusions -- Acknowledgments -- References -- Chapter 7: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and zinc oxides: Energy applications -- 7.1. Cellulose and derivatives from renewable sources -- 7.2. Types of cellulose -- 7.2.1. Cellulose nanofibrils (CNF) -- 7.2.2. Cellulose nanocrystals (CNC) -- 7.2.3. Bacterial nanocellulose (BNC) -- 7.3. Metal oxide-based cellulose nanohybrid composites -- 7.3.1. Zinc-oxide based cellulose hybrid nanocomposite -- 7.3.2. Synthesis methods and surface modification -- 7.3.3. Cellulose/ZnO energy and sensing properties -- 7.4. Cellulose-based composites for energy applications -- 7.4.1. State of art -- 7.4.2. Cellulose-based material for energy conversion -- 7.4.2.1. Organic photovoltaics (OPV) -- 7.4.2.2. Nanocellulose-based paper substrate for solar cell development -- 7.4.2.3. CNF-templated mesoporous structure as solar cell electrodes -- 7.4.2.4. Cellulose in photoelectrochemical (PEC) cell development -- 7.5. Cellulose for energy storage -- 7.5.1. Cellulose in sodium-ion battery (SIB) -- 7.5.2. Cellulose-based lithium-ion batteries (LIB) -- 7.5.2.1. Cellulose-based binders for LIB -- 7.5.2.2. Cellulose-based separators for LIB -- 7.5.2.3. Cellulose-based electrolyte for LIB -- 7.5.3. Supercapacitors -- 7.5.3.1. Nanocellulose as substrate materials for paper supercapacitors -- 7.5.4. Cellulose as electrodes for pseudo-capacitors -- 7.5.5. Cellulose nanomaterials for nanogenerator developments -- 7.5.5.1. Cellulose nanostructure-based triboelectric nanogenerators -- 7.5.5.2. Cellulose-based piezoelectric nanogenerators -- 7.6. Summary -- References -- Chapter 8: Cellulose nanocrystal (CNC): Inorganic hybrid nanocomposites -- 8.1. Introduction -- 8.2. Cellulose nanocrystals -- 8.2.1. General overview on the chemistry and properties of cellulose.
|
505 |
8 |
|
|a 8.2.2. Extraction techniques of cellulose nanocrystals -- 8.3. Cellulose nanocrystals: Inorganic hybrid nanocomposites -- 8.3.1. Synthesis of cellulose-inorganic hybrid nanocomposites -- 8.3.1.1. Coprecipitation process -- 8.3.1.2. Sol-gel processing -- 8.3.1.3. Pickering emulsion synthesis -- 8.3.1.4. Hydrothermal/solvothermal processing -- 8.3.2. Characterization of cellulose-inorganic hybrid nanocomposites -- 8.3.2.1. Cellulose-silica nanoparticles hybrid nanocomposites -- 8.3.2.2. Cellulose-gold nanoparticles hybrid nanocomposites -- 8.3.2.3. Cellulose-silver nanoparticles hybrid nanocomposites -- 8.3.2.4. Cellulose-palladium nanoparticles hybrid nanocomposites -- 8.3.2.5. Cellulose-metal oxide nanoparticles hybrid nanocomposites -- 8.3.3. Cellulose-inorganic hybrid nanocomposites applications -- 8.4. Conclusion -- References -- Chapter 9: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils with graphene and its derivatives: From prep ... -- 9.1. Introduction -- 9.2. Cellulose based nanocrystals/nanofibrils -- 9.3. Graphene based composites -- 9.4. Nanocomposites of cellulose nanocrystals/nanofibrils with graphene and its derivatives -- 9.5. Solution intercalation -- 9.6. Melt intercalation -- 9.7. In situ polymerization -- 9.8. Applications -- 9.9. Conclusion -- Reference -- Chapter 10: Hybrid nanocomposites based on cellulose nanocrystals/nanofibrils: From preparation to applications -- 10.1. Introduction to cellulose-based composites -- 10.2. Materials and methods -- 10.2.1. Materials -- 10.2.1.1. Preparation of nanocellulose fiber from sugarcane bagasse -- 10.2.1.2. Synthesis of Al-SiC nanoparticles -- 10.2.1.3. Polyester composites fabrication -- 10.2.2. Characterization -- 10.3. Results and discussion -- 10.3.1. Characteristic curves -- 10.3.2. Mechanical properties -- 10.3.3. Viscoelastic properties.
|
505 |
8 |
|
|a 10.3.4. Thermal stability -- 10.4. Applications of polyester hybrid composites -- 10.5. Conclusion -- Acknowledgment -- References -- Chapter 11: Mechanical modeling of hybrid nanocomposites based on cellulose nanocrystals/nanofibrils and nanoparticles -- 11.1. Introduction -- 11.2. Nanocomposites reinforcement -- 11.2.1. Nano-reinforcements classification -- 11.2.1.1. 3D geometry reinforcement -- 11.2.1.2. 2D geometry reinforcement -- 11.2.1.3. 1D geometry reinforcement -- 11.2.2. Nanocomposites based on cellulose reinforcement -- 11.2.2.1. Cellulose classification -- Cellulose nanofibers (CNF) -- Cellulose nanocrystals (CNC) -- Cellulose hairy nanocrystals (CHNC) -- 11.2.2.2. Effects of nanocellulose on polymer mechanical properties -- Fiber aspect ratio -- Fiber volume fraction -- Fiber orientation -- Fiber dispersion -- Fiber/matrix adhesion -- Type of the fibers -- 11.3. Cellulose based hybrid nanocomposites materials -- 11.3.1. Manufacturing methods -- 11.3.1.1. Solution casting technique -- 11.3.1.2. In situ technique -- 11.3.1.3. Melt blending technique -- 11.3.2. Hybrid nanocomposites mechanical properties -- 11.3.2.1. Polymer hybrid nanocomposites based on cellulose/inorganic materials -- 11.3.2.2. Polymer hybrid nanocomposites based on cellulose/metallic materials -- 11.3.2.3. Polymer hybrid nanocomposites based on cellulose/carbon allotropes -- 11.4. Mechanical modeling of hybrid nanocomposites based on cellulose -- 11.4.1. Phenomenological models -- 11.4.2. Homogenization models -- 11.4.2.1. Voigt and Reuss limiting cases -- 11.4.2.2. Eshelby approach -- Homogeneous inclusion of Eshelby -- Heterogeneous inclusion of Eshelby -- 11.4.2.3. Self-consistent model -- 11.5. Conclusion -- References -- Index.
|
650 |
|
0 |
|a Nanocomposites (Materials)
|
650 |
|
0 |
|a Cellulose
|x Industrial applications.
|
650 |
|
6 |
|a Mat�eriaux nanocomposites.
|0 (CaQQLa)000269981
|
650 |
|
6 |
|a Cellulose
|0 (CaQQLa)201-0005083
|x Applications industrielles.
|0 (CaQQLa)201-0374039
|
650 |
|
7 |
|a Nanocomposites (Materials)
|2 fast
|0 (OCoLC)fst01748679
|
700 |
1 |
|
|a Rodrigue, Denis.
|
700 |
1 |
|
|a Qaiss, Abou el Kacem.
|
700 |
1 |
|
|a Bouhfid, Rachid.
|
776 |
0 |
8 |
|i Ebook version :
|z 9780128230909
|
776 |
0 |
8 |
|i Print version:
|t Cellulose nanocrystal/nanoparticles hybrid nanocomposites.
|d London : Woodhead Publishing, 2021
|z 0128229063
|z 9780128229064
|w (OCoLC)1164497596
|
830 |
|
0 |
|a Woodhead Publishing series in composites science and engineering.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128229064
|z Texto completo
|