Cargando…

Microfluidic devices for biomedical applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Li, Xiujun (Editor ), Zhou, Yu (Research scientist) (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Woodhead Publishing, 2021.
Edición:Second edition.
Colección:Woodhead Publishing series in biomaterials.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Microfluidic Devices for Biomedical Applications
  • Microfluidic Devices for Biomedical Applications
  • Copyright
  • Contents
  • Contributors
  • Editor Biographies
  • Preface to the first edition
  • Preface to the second edition
  • 1
  • Materials and methods for microfabrication of microfluidic devices
  • 1.1 Introduction
  • 1.2 Microfabrication methods
  • 1.2.1 Photolithography-based microfabrication
  • 1.2.2 Replication-based methods
  • 1.2.2.1 Soft lithography
  • 1.2.2.2 Hot embossing
  • 1.2.2.3 Injection molding
  • 1.2.3 Xurography-based microfabrication
  • 1.3 Materials
  • 1.3.1 Glass
  • 1.3.1.1 Fabrication
  • 1.3.1.2 Wet chemical etching
  • 1.3.1.3 Plasma etching
  • 1.3.1.4 Other methods
  • 1.3.1.5 Bonding
  • 1.3.1.6 Applications and future trends
  • 1.3.2 Silicon
  • 1.3.2.1 Fabrication
  • 1.3.2.2 Bulk micromachining
  • 1.3.2.3 Surface micromachining
  • 1.3.2.4 Applications and future trends
  • 1.3.3 Polymers
  • 1.3.3.1 Siloxane elastomers
  • Polydimethylsiloxane
  • Fabrication of microfluidic devices using PDMS
  • Interconnection and bonding
  • Applications and future trends
  • 1.3.3.2 Thermosetting polymers
  • Parylene
  • Fabrication of microfluidic devices using parylene
  • Interconnection and bonding
  • Applications and future trends
  • Polyimide
  • Polyurethane
  • 1.3.3.3 Thermoplastic polymers
  • PMMA
  • Fabrication of microfluidic devices using PMMA
  • PMMA interconnection and bonding
  • Polycarbonate
  • COC/COP
  • 1.3.4 Paper
  • 1.3.5 Thread
  • 1.3.5.1 Patterning threads
  • 1.3.5.2 Applications
  • 1.3.6 Pressure sensitive adhesives
  • 1.4 Conclusion and future trends
  • 1.5 Acronyms
  • References
  • 2
  • Surface coatings for microfluidic biomedical devices
  • 2.1 Introduction
  • 2.2 Covalent immobilization strategies: polymer devices
  • 2.2.1 Polydimethylsiloxane devices
  • 2.2.1.1 Silanization strategies.
  • 2.2.1.2 Other immobilization schemes on PDMS
  • 2.2.2 Thermoplastic devices
  • 2.2.2.1 Polymethyl methacrylate
  • 2.2.2.2 Cyclic olefin polymers and copolymers
  • 2.2.3 Other polymer devices
  • 2.2.3.1 Polycarbonate
  • 2.2.3.2 Polystyrene
  • 2.3 Covalent immobilization strategies: glass devices
  • 2.3.1 Silanization
  • 2.3.2 Other strategies
  • 2.4 Adsorption strategies
  • 2.4.1 Proteins
  • 2.4.2 Adsorptive polymer coatings
  • 2.4.3 Polyelectrolyte multilayers
  • 2.4.4 Surfactants
  • 2.5 Other strategies utilizing surface treatments
  • 2.6 Examples of applications
  • 2.6.1 Lab-on-a-chip drug analysis of blood serum
  • 2.6.2 Single cell transcriptome analysis with microfluidic PCR
  • 2.6.3 Immunosensor to detect pathogenic bacteria
  • 2.7 Conclusions and future trends
  • 2.8 Sources of further information and advice
  • References
  • 3
  • Actuation mechanisms for microfluidic biomedical devices
  • 3.1 Introduction
  • 3.2 Electrokinetics
  • 3.2.1 The electric double layer
  • 3.2.2 Electroosmosis
  • 3.2.2.1 Electroosmotic slip
  • 3.2.2.2 Electroosmotic pumping
  • 3.2.2.3 Electroosmotic mixing
  • 3.2.3 Electrophoresis
  • 3.2.4 AC electrokinetics
  • 3.2.5 Dielectrophoresis
  • 3.3 Acoustics
  • 3.3.1 Basic principles of acoustic fluid and particle manipulation
  • 3.3.2 Bulk ultrasonic vibration
  • 3.3.3 Surface acoustic waves
  • 3.3.3.1 SAW particle manipulation
  • 3.3.3.2 SAW fluid actuation and manipulation
  • 3.4 Limitations and future trends
  • References
  • 4
  • Droplet microfluidics for biomedical devices
  • 4.1 Introduction-droplets in the wider context of microfluidics
  • 4.2 Fundamental principles of droplet microfluidics
  • 4.2.1 Droplet flow in microchannels
  • 4.2.1.1 Dimensionless numbers
  • 4.2.1.2 Flow patterns
  • 4.2.1.3 Independent variables for experiments
  • 4.2.1.4 Interfacial tension and surfactants
  • 4.2.1.5 Surface wetting conditions.
  • 4.2.2 Comparison and contrast of single-phase and droplet microfluidics
  • 4.2.2.1 General advantages of microfluidic flow
  • 4.2.2.2 Disadvantages of single-phase microfluidics
  • 4.2.2.3 Advantages of droplet microfluidics
  • 4.2.2.4 Disadvantages of droplet microfluidics
  • 4.3 Droplet microfluidic approaches
  • 4.3.1 Passive microfluidics
  • 4.3.1.1 Generation
  • 4.3.1.2 Splitting
  • 4.3.1.3 Merging
  • 4.3.1.4 Mixing
  • 4.3.1.5 Incubation
  • 4.3.1.6 Sorting
  • 4.3.2 Active microfluidics
  • 4.3.2.1 Control of multiple droplets
  • 4.3.2.2 Control of individual droplets
  • 4.4 Biomedical applications
  • 4.4.1 Biomaterials
  • 4.4.1.1 Materials
  • 4.4.1.2 Drug delivery
  • 4.4.1.3 Stem cells and tissue engineering
  • 4.4.1.4 General perspective on droplet microfluidics and biomaterials
  • 4.4.2 Isolated element screening
  • 4.4.2.1 Single-cell encapsulation
  • 4.4.2.2 On-chip analysis tools
  • 4.4.2.3 General perspective on droplet microfluidics and isolated element analysis
  • 4.4.3 Bioreactors
  • 4.4.3.1 Drug screening
  • 4.4.3.2 Artificial cells
  • 4.4.3.3 General perspective on droplet microfluidics and bioreactors
  • 4.5 Conclusion-perspective on the future of biomedical applications using droplet microfluidics
  • References
  • 5
  • Controlled drug delivery using microdevices
  • 5.1 Introduction
  • 5.2 Microreservoir-based drug delivery systems
  • 5.2.1 Working principle
  • 5.2.2 Microreservoir fabrication
  • 5.2.3 Applications
  • 5.2.3.1 Silicon-based devices
  • 5.2.3.2 Polymer-based device
  • 5.3 Micro/nanofluidics-based drug delivery systems
  • 5.3.1 Working principle
  • 5.3.2 Fabrication of micro/nanofluidic drug delivery systems
  • 5.3.3 Applications
  • 5.4 Future trends and challenges
  • References
  • 6
  • Microneedles for drug delivery and monitoring
  • 6.1 Introduction
  • 6.2 Microneedle design parameters and structure.
  • 6.2.1 Microneedle geometry
  • 6.2.2 Microneedle materials
  • 6.3 Drug delivery strategies using microneedle arrays
  • 6.3.1 Solid microneedle arrays
  • 6.3.2 Coated microneedle arrays
  • 6.3.3 Dissolving microneedle arrays
  • 6.3.4 Hollow microneedle arrays
  • 6.3.5 Hydrogel-forming microneedle arrays
  • 6.4 Other microneedle array applications
  • 6.4.1 Microneedle-mediated vaccine delivery
  • 6.4.2 Microneedle-mediated skin appearance improvement and delivery of cosmeceuticals
  • 6.5 Microneedle-mediated patient monitoring and diagnosis
  • 6.5.1 Fluid flow
  • 6.5.2 Differential strategies for fluid extraction
  • 6.5.3 Integrated designs
  • 6.6 Clinical translation and commercialisation of microneedle products
  • 6.7 Conclusion
  • References
  • 7
  • Microfluidic systems for drug discovery, pharmaceutical analysis, and diagnostic applications
  • 7.1 Introduction
  • 7.2 Microfluidics for drug discovery
  • 7.2.1 Identification of druggable targets
  • 7.2.2 Hit identification and lead optimization
  • 7.2.2.1 Synthesis of drug libraries
  • 7.2.2.2 High throughput screening
  • 7.2.3 Preclinical evaluation
  • 7.2.3.1 In vitro evaluation
  • 7.2.3.2 Ex vivo evaluation
  • 7.2.3.3 In vivo evaluation
  • 7.3 Microfluidics for pharmaceutical analysis and diagnostic applications
  • 7.3.1 Microfluidics for pharmaceutical analysis
  • 7.3.2 Microfluidics for diagnostic purposes
  • 7.4 Examples of commercial microfluidic devices
  • 7.5 Future trends
  • References
  • 8
  • Microfluidic devices for cell manipulation
  • 8.1 Introduction
  • 8.1.1 Key issues
  • 8.2 Microenvironment on cell integrity
  • 8.2.1 Cell structure and function
  • 8.2.2 External stresses on cells
  • 8.3 Microscale fluid dynamics
  • 8.3.1 Dimensionless numbers
  • 8.3.2 Properties of biofluids
  • 8.3.3 Flow dynamics in microchannels
  • 8.3.4 System design and operation.
  • 8.3.4.1 Complex microfluidic networks
  • 8.3.4.2 Bubble extraction
  • 8.4 Manipulation technologies
  • 8.4.1 Field flow fractionation
  • 8.4.2 Hydrodynamic mechanisms
  • 8.4.2.1 Deterministic physical interactions
  • 8.4.2.2 Inertial migration
  • 8.4.2.3 Curved channels
  • 8.4.2.4 Hydrodynamic filtering and microfluidic networks
  • 8.4.2.5 Biomimetics
  • 8.4.2.6 Hydrophoresis and microstructure inclusions
  • 8.4.2.7 Hydrodynamic devices
  • 8.4.3 Electrokinetic mechanisms
  • 8.4.3.1 Dielectrophoresis
  • 8.4.3.2 AC electroosmosis
  • 8.4.3.3 Electrokinetic devices
  • 8.4.4 Acoustic mechanisms
  • 8.4.4.1 Acoustic radiation force
  • 8.4.4.2 Acoustophoretic devices
  • 8.4.5 Optical mechanisms
  • 8.4.5.1 Optical devices
  • 8.4.6 Magnetic mechanisms
  • 8.4.6.1 Magnetic force
  • 8.4.6.2 Magnetophoretic devices
  • 8.5 Manipulation of cancer cells in microfluidic systems
  • 8.5.1 Deformability and migration studies
  • 8.5.2 Microfluidic separation and sorting
  • 8.5.3 Current challenges in sorting and detection
  • 8.6 Conclusion and future trends
  • 8.7 Sources of further information and advice
  • References
  • 9
  • Microfluidic devices for immobilization and micromanipulation of single cells and small organisms
  • 9.1 Introduction
  • 9.2 Glass microfluidic device for rapid single cell immobilization and microinjection
  • 9.3 Microfluidic device for automated, high-speed microinjection of C. elegans
  • 9.4 Microfabricated device for immobilization and mechanical stimulation of Drosophila larvae
  • 9.5 Conclusions and outlook
  • References
  • 10
  • Microfluidic devices for developing tissue scaffolds
  • 10.1 Introduction
  • 10.2 Key issues and technical challenges for successful tissue engineering
  • 10.2.1 Clinically relevant cell numbers: from stem cells through to mature, fully differentiated cells
  • 10.2.2 Effective cell seeding and scaffold colonization.