Microfluidic devices for biomedical applications /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford :
Woodhead Publishing,
2021.
|
Edición: | Second edition. |
Colección: | Woodhead Publishing series in biomaterials.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Microfluidic Devices for Biomedical Applications
- Microfluidic Devices for Biomedical Applications
- Copyright
- Contents
- Contributors
- Editor Biographies
- Preface to the first edition
- Preface to the second edition
- 1
- Materials and methods for microfabrication of microfluidic devices
- 1.1 Introduction
- 1.2 Microfabrication methods
- 1.2.1 Photolithography-based microfabrication
- 1.2.2 Replication-based methods
- 1.2.2.1 Soft lithography
- 1.2.2.2 Hot embossing
- 1.2.2.3 Injection molding
- 1.2.3 Xurography-based microfabrication
- 1.3 Materials
- 1.3.1 Glass
- 1.3.1.1 Fabrication
- 1.3.1.2 Wet chemical etching
- 1.3.1.3 Plasma etching
- 1.3.1.4 Other methods
- 1.3.1.5 Bonding
- 1.3.1.6 Applications and future trends
- 1.3.2 Silicon
- 1.3.2.1 Fabrication
- 1.3.2.2 Bulk micromachining
- 1.3.2.3 Surface micromachining
- 1.3.2.4 Applications and future trends
- 1.3.3 Polymers
- 1.3.3.1 Siloxane elastomers
- Polydimethylsiloxane
- Fabrication of microfluidic devices using PDMS
- Interconnection and bonding
- Applications and future trends
- 1.3.3.2 Thermosetting polymers
- Parylene
- Fabrication of microfluidic devices using parylene
- Interconnection and bonding
- Applications and future trends
- Polyimide
- Polyurethane
- 1.3.3.3 Thermoplastic polymers
- PMMA
- Fabrication of microfluidic devices using PMMA
- PMMA interconnection and bonding
- Polycarbonate
- COC/COP
- 1.3.4 Paper
- 1.3.5 Thread
- 1.3.5.1 Patterning threads
- 1.3.5.2 Applications
- 1.3.6 Pressure sensitive adhesives
- 1.4 Conclusion and future trends
- 1.5 Acronyms
- References
- 2
- Surface coatings for microfluidic biomedical devices
- 2.1 Introduction
- 2.2 Covalent immobilization strategies: polymer devices
- 2.2.1 Polydimethylsiloxane devices
- 2.2.1.1 Silanization strategies.
- 2.2.1.2 Other immobilization schemes on PDMS
- 2.2.2 Thermoplastic devices
- 2.2.2.1 Polymethyl methacrylate
- 2.2.2.2 Cyclic olefin polymers and copolymers
- 2.2.3 Other polymer devices
- 2.2.3.1 Polycarbonate
- 2.2.3.2 Polystyrene
- 2.3 Covalent immobilization strategies: glass devices
- 2.3.1 Silanization
- 2.3.2 Other strategies
- 2.4 Adsorption strategies
- 2.4.1 Proteins
- 2.4.2 Adsorptive polymer coatings
- 2.4.3 Polyelectrolyte multilayers
- 2.4.4 Surfactants
- 2.5 Other strategies utilizing surface treatments
- 2.6 Examples of applications
- 2.6.1 Lab-on-a-chip drug analysis of blood serum
- 2.6.2 Single cell transcriptome analysis with microfluidic PCR
- 2.6.3 Immunosensor to detect pathogenic bacteria
- 2.7 Conclusions and future trends
- 2.8 Sources of further information and advice
- References
- 3
- Actuation mechanisms for microfluidic biomedical devices
- 3.1 Introduction
- 3.2 Electrokinetics
- 3.2.1 The electric double layer
- 3.2.2 Electroosmosis
- 3.2.2.1 Electroosmotic slip
- 3.2.2.2 Electroosmotic pumping
- 3.2.2.3 Electroosmotic mixing
- 3.2.3 Electrophoresis
- 3.2.4 AC electrokinetics
- 3.2.5 Dielectrophoresis
- 3.3 Acoustics
- 3.3.1 Basic principles of acoustic fluid and particle manipulation
- 3.3.2 Bulk ultrasonic vibration
- 3.3.3 Surface acoustic waves
- 3.3.3.1 SAW particle manipulation
- 3.3.3.2 SAW fluid actuation and manipulation
- 3.4 Limitations and future trends
- References
- 4
- Droplet microfluidics for biomedical devices
- 4.1 Introduction-droplets in the wider context of microfluidics
- 4.2 Fundamental principles of droplet microfluidics
- 4.2.1 Droplet flow in microchannels
- 4.2.1.1 Dimensionless numbers
- 4.2.1.2 Flow patterns
- 4.2.1.3 Independent variables for experiments
- 4.2.1.4 Interfacial tension and surfactants
- 4.2.1.5 Surface wetting conditions.
- 4.2.2 Comparison and contrast of single-phase and droplet microfluidics
- 4.2.2.1 General advantages of microfluidic flow
- 4.2.2.2 Disadvantages of single-phase microfluidics
- 4.2.2.3 Advantages of droplet microfluidics
- 4.2.2.4 Disadvantages of droplet microfluidics
- 4.3 Droplet microfluidic approaches
- 4.3.1 Passive microfluidics
- 4.3.1.1 Generation
- 4.3.1.2 Splitting
- 4.3.1.3 Merging
- 4.3.1.4 Mixing
- 4.3.1.5 Incubation
- 4.3.1.6 Sorting
- 4.3.2 Active microfluidics
- 4.3.2.1 Control of multiple droplets
- 4.3.2.2 Control of individual droplets
- 4.4 Biomedical applications
- 4.4.1 Biomaterials
- 4.4.1.1 Materials
- 4.4.1.2 Drug delivery
- 4.4.1.3 Stem cells and tissue engineering
- 4.4.1.4 General perspective on droplet microfluidics and biomaterials
- 4.4.2 Isolated element screening
- 4.4.2.1 Single-cell encapsulation
- 4.4.2.2 On-chip analysis tools
- 4.4.2.3 General perspective on droplet microfluidics and isolated element analysis
- 4.4.3 Bioreactors
- 4.4.3.1 Drug screening
- 4.4.3.2 Artificial cells
- 4.4.3.3 General perspective on droplet microfluidics and bioreactors
- 4.5 Conclusion-perspective on the future of biomedical applications using droplet microfluidics
- References
- 5
- Controlled drug delivery using microdevices
- 5.1 Introduction
- 5.2 Microreservoir-based drug delivery systems
- 5.2.1 Working principle
- 5.2.2 Microreservoir fabrication
- 5.2.3 Applications
- 5.2.3.1 Silicon-based devices
- 5.2.3.2 Polymer-based device
- 5.3 Micro/nanofluidics-based drug delivery systems
- 5.3.1 Working principle
- 5.3.2 Fabrication of micro/nanofluidic drug delivery systems
- 5.3.3 Applications
- 5.4 Future trends and challenges
- References
- 6
- Microneedles for drug delivery and monitoring
- 6.1 Introduction
- 6.2 Microneedle design parameters and structure.
- 6.2.1 Microneedle geometry
- 6.2.2 Microneedle materials
- 6.3 Drug delivery strategies using microneedle arrays
- 6.3.1 Solid microneedle arrays
- 6.3.2 Coated microneedle arrays
- 6.3.3 Dissolving microneedle arrays
- 6.3.4 Hollow microneedle arrays
- 6.3.5 Hydrogel-forming microneedle arrays
- 6.4 Other microneedle array applications
- 6.4.1 Microneedle-mediated vaccine delivery
- 6.4.2 Microneedle-mediated skin appearance improvement and delivery of cosmeceuticals
- 6.5 Microneedle-mediated patient monitoring and diagnosis
- 6.5.1 Fluid flow
- 6.5.2 Differential strategies for fluid extraction
- 6.5.3 Integrated designs
- 6.6 Clinical translation and commercialisation of microneedle products
- 6.7 Conclusion
- References
- 7
- Microfluidic systems for drug discovery, pharmaceutical analysis, and diagnostic applications
- 7.1 Introduction
- 7.2 Microfluidics for drug discovery
- 7.2.1 Identification of druggable targets
- 7.2.2 Hit identification and lead optimization
- 7.2.2.1 Synthesis of drug libraries
- 7.2.2.2 High throughput screening
- 7.2.3 Preclinical evaluation
- 7.2.3.1 In vitro evaluation
- 7.2.3.2 Ex vivo evaluation
- 7.2.3.3 In vivo evaluation
- 7.3 Microfluidics for pharmaceutical analysis and diagnostic applications
- 7.3.1 Microfluidics for pharmaceutical analysis
- 7.3.2 Microfluidics for diagnostic purposes
- 7.4 Examples of commercial microfluidic devices
- 7.5 Future trends
- References
- 8
- Microfluidic devices for cell manipulation
- 8.1 Introduction
- 8.1.1 Key issues
- 8.2 Microenvironment on cell integrity
- 8.2.1 Cell structure and function
- 8.2.2 External stresses on cells
- 8.3 Microscale fluid dynamics
- 8.3.1 Dimensionless numbers
- 8.3.2 Properties of biofluids
- 8.3.3 Flow dynamics in microchannels
- 8.3.4 System design and operation.
- 8.3.4.1 Complex microfluidic networks
- 8.3.4.2 Bubble extraction
- 8.4 Manipulation technologies
- 8.4.1 Field flow fractionation
- 8.4.2 Hydrodynamic mechanisms
- 8.4.2.1 Deterministic physical interactions
- 8.4.2.2 Inertial migration
- 8.4.2.3 Curved channels
- 8.4.2.4 Hydrodynamic filtering and microfluidic networks
- 8.4.2.5 Biomimetics
- 8.4.2.6 Hydrophoresis and microstructure inclusions
- 8.4.2.7 Hydrodynamic devices
- 8.4.3 Electrokinetic mechanisms
- 8.4.3.1 Dielectrophoresis
- 8.4.3.2 AC electroosmosis
- 8.4.3.3 Electrokinetic devices
- 8.4.4 Acoustic mechanisms
- 8.4.4.1 Acoustic radiation force
- 8.4.4.2 Acoustophoretic devices
- 8.4.5 Optical mechanisms
- 8.4.5.1 Optical devices
- 8.4.6 Magnetic mechanisms
- 8.4.6.1 Magnetic force
- 8.4.6.2 Magnetophoretic devices
- 8.5 Manipulation of cancer cells in microfluidic systems
- 8.5.1 Deformability and migration studies
- 8.5.2 Microfluidic separation and sorting
- 8.5.3 Current challenges in sorting and detection
- 8.6 Conclusion and future trends
- 8.7 Sources of further information and advice
- References
- 9
- Microfluidic devices for immobilization and micromanipulation of single cells and small organisms
- 9.1 Introduction
- 9.2 Glass microfluidic device for rapid single cell immobilization and microinjection
- 9.3 Microfluidic device for automated, high-speed microinjection of C. elegans
- 9.4 Microfabricated device for immobilization and mechanical stimulation of Drosophila larvae
- 9.5 Conclusions and outlook
- References
- 10
- Microfluidic devices for developing tissue scaffolds
- 10.1 Introduction
- 10.2 Key issues and technical challenges for successful tissue engineering
- 10.2.1 Clinically relevant cell numbers: from stem cells through to mature, fully differentiated cells
- 10.2.2 Effective cell seeding and scaffold colonization.