Cargando…

Recent advancement in microbial biotechnology : agricultural and industrial approach /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: De Mandal, Surajit, Passari, Ajit Kumar
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, 2021.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Recent Advancement in Microbial Biotechnology: Agricultural and Industrial Approach
  • Copyright
  • Contents
  • Contributors
  • Chapter 1: Microbial biofertilizers: Recent trends and future outlook
  • Chapter outline
  • 1. Introduction
  • 2. Categories of biofertilizers
  • 2.1. Nitrogen-fixing biofertilizers
  • 2.2. Phosphate-solubilizing biofertilizer
  • 2.3. Phosphate mobilizing biofertilizers
  • 2.4. Plant growth-promoting biofertilizer
  • 2.5. Potassium-solubilizing biofertilizer
  • 2.6. Potassium-mobilizing biofertilizer
  • 2.7. Sulfur-oxidizing biofertilizer
  • 3. Symbiotic nitrogen-fixing bacteria
  • 3.1. Rhizobium
  • 3.2. Free-living nitrogen-fixing bacteria
  • 3.2.1. Azotobacter
  • 3.2.2. Azospirillum
  • 4. Phosphorus-solubilizing biofertilizers
  • 4.1. Bacillus
  • 4.2. Pseudomonas
  • 5. Free-living nitrogen-fixing cyanobacteria
  • 6. Potassium-solubilizing microbes
  • 7. Mycorrhiza
  • 7.1. Ectomycorrhiza
  • 7.2. Endomycorrhiza
  • 7.2.1. Vesicular arbuscular mycorrhiza
  • 8. Role of microbial fertilizers toward sustainable agriculture
  • 9. Constraints and future outlook
  • References
  • Chapter 2: Phosphate-solubilizing bacteria: Recent trends and applications in agriculture
  • Chapter outline
  • 1. Introduction
  • 2. Phosphorus in soil
  • 3. Phosphate solubilization by plant growth-promoting microorganisms in plant rhizosphere
  • 4. Phosphate-solubilizing bacteria as biofertilizers
  • 5. Mechanisms of phosphate solubilization
  • 5.1. Inorganic P solubilization
  • 5.2. Organic phosphate mineralization by PSM
  • 6. Effect of phosphate solubilizers on plant growth and crop yield
  • 7. PSB application methods in agriculture
  • 8. Recent developments
  • 9. Conclusions
  • References
  • Chapter 3: Trichoderma spp.-Application and future prospects in agricultural industry
  • Chapter outline
  • 1. Introduction.
  • 2. Competency in the rhizosphere and plant root colonization
  • 3. Trichoderma in bioremediation
  • 4. Trichoderma in organic agriculture
  • 5. Trichoderma formulations
  • 6. Trichoderma in biofuels
  • 7. Conclusion and future prospectives
  • Acknowledgment
  • References
  • Chapter 4: Current status and future prospects of entomopathogenic fungi: A potential source of biopesticides
  • Chapter outline
  • 1. Introduction
  • 2. Entomopathogenic fungi
  • 3. Some of the current commercialized entomopathogenic fungi-based biopesticides
  • 4. Entomopathogenic fungi on insect cadavers from the field and laboratory
  • 5. The most utilized entomopathogenic fungi as biopesticides
  • 5.1. Beauveria bassiana
  • 5.1.1. Mode of action of Beauveria bassiana
  • 5.1.2. Mass production of Beauveria bassiana
  • 5.2. Metarhizium anisopliae
  • 5.2.1. Mode of action of Metarhizium anisopliae
  • 5.2.2. Mass production of Metarhizium anisopliae
  • 6. The future of entomopathogenic fungi-based biopesticides
  • 7. Studies on the compatibility of entomopathogenic fungi with other insecticides for IPM
  • 8. Some of the newly described entomopathogenic fungi
  • 9. Mass production of entomopathogenic fungi-based biopesticides
  • 10. Application of molecular technology in EPF-based biopesticides
  • 11. Conclusion
  • References
  • Chapter 5: Microbial fortification during vermicomposting: A brief review
  • Chapter outline
  • 1. Introduction
  • 2. Influence of vermicomposting and aerobic composting processes on microbial dominance
  • 2.1. Impact on bacterial profile
  • 2.2. Impact on fungal growth
  • 3. Influence of earthworm ecological categories on microbial dominance and their relative abundance
  • 4. Influence of microbial structural change and temporal dominance on nutrient availability
  • 4.1. Alteration of microbial respiration and biomass: Its impact on soil fertility.
  • 5. Microbial gene expression as a functional biomarker of dominance under vermicomposting systems
  • 6. Effect on bioremediation
  • 7. Conclusion
  • Acknowledgment
  • References
  • Chapter 6: Potential of compost for sustainable crop production and soil health
  • Chapter outline
  • 1. Introduction
  • 2. Composting, types, and phases
  • 2.1. Process of composting
  • 2.2. Types of composting
  • 2.2.1. Aerobic composting
  • 2.2.1.1. Heap method
  • 2.2.1.2. Aerated windrow composting
  • 2.2.1.3. In-vessel compositing
  • 2.2.2. Vermicomposting
  • 2.2.3. Anaerobic composting
  • 2.2.3.1. Stacks or piles
  • 2.2.3.2. Bokashi composting
  • 2.2.3.3. Submerged composting
  • 2.2.4. Mechanical composting (composting equipment)
  • 2.3. Phases of composting
  • 2.3.1. Mesophilic phase
  • 2.3.2. Thermophilic phase
  • 2.3.3. Cooling and curing phase
  • 3. Biochemistry of composting
  • 3.1. Composting and microorganisms
  • 3.1.1. Bacteria
  • 3.1.2. Actinomyces
  • 3.1.3. Fungi
  • 3.1.4. Worms
  • 3.1.5. Rotifers
  • 3.2. parameters
  • 3.2.1. Aeration
  • 3.2.2. C:N ratio
  • 3.2.3. pH
  • 3.2.4. Moisture content
  • 3.2.5. Microbial population
  • 3.2.6. Temperature
  • 3.2.7. Enzymatic activity
  • 3.3. Chemical reactions in the composting process
  • 3.3.1. Nitrification
  • 4. Composting and sustainable environment
  • 4.1. Composting and bioremediation
  • 5. Composting and sustainable soil health
  • 6. Compost and sustainable crop production
  • 7. Composting and biogas
  • 8. Conclusion
  • References
  • Chapter 7: Fungal bioprocessing of lignocellulosic materials for biorefinery
  • Chapter outline
  • 1. Introduction
  • 2. Lignocelullosic biomass and its chain value
  • 2.1. Economy of biomaterials
  • 2.2. Knowledge-based bioeconomy for biorefineries
  • 2.3. Circular bioeconomy
  • 2.4. Valorization of lignocellulosic biomass.
  • 3. Benefits of lignocellulosic materials for biorefineries
  • 3.1. Availability of lignocellulose
  • 3.2. Advantages of lignocellulosic feedstock for biorefineries
  • 3.2.1. Technical and environmental advantages
  • 3.2.2. Social and economic aspects
  • 4. Lignocellulosic materials, structure, and characteristics
  • 4.1. Cellulose
  • 4.2. Hemicellulose
  • 4.3. Lignin
  • 5. Fungi and their lignocellulose degrading abilities
  • 6. Genetic engineering to clear fungi the way to use alternative feedstocks
  • 6.1. Genetic manipulation of microorganisms
  • 6.2. Novel adaptations of microorganisms in the biorefinery
  • 6.3. A successful strategy to implement fungal plant pathogens as itaconic acid producers
  • 7. From recalcitrant biomass to a more accessible feedstock
  • 8. Agroindustrial fruit pulp-rich peel and fishery residual biomasses
  • 8.1. Complementing the ability to degrade fruit peel pectin-rich residual biomass
  • 8.2. Chitin, from a protective shell to a valued product
  • 9. Fungal bioprocessing to produce metabolites on biorefineries
  • 9.1. Biorefinery processing
  • 9.2. Pretreatment of lignocellulosic biomass
  • 9.3. Bioprocessing of lignocellulosic feedstock
  • 9.3.1. LSF bioreactors for bioprocessing lignocellulose
  • 9.4. Bioprocessing types of lignocellulose
  • 9.5. Production of fungal bioprocessed metabolites
  • 10. Conclusions
  • References
  • Chapter 8: Bioelectrochemical technologies: Current and potential applications in agriculture resource recovery
  • Chapter outline
  • Abbreviations
  • 1. Introduction
  • 2. BESs
  • 3. BESs in recovering energy from agricultural wastes
  • 3.1. Direct generation of electricity
  • 3.1.1. Electricity generation from animal wastes
  • Treating animal wastewaters
  • Treating animal waste slurries
  • Treating raw solid animal wastes
  • 3.1.2. Electricity generation from lignocellulosic wastes.
  • Treating corn-derived lignocellulosic wastes
  • Treating wheat straw lignocellulosic wastes
  • Treating rice mill wastewater
  • 3.2. Production of fuel gases
  • 3.2.1. Production of hydrogen
  • Production of hydrogen directly from cellulosic biomass with MECs
  • Production of hydrogen by integrating fermentation and MECs
  • 3.2.2. Production of methane
  • Production of methane via electrofermentation
  • Production of methane via only the reduction of carbon dioxide
  • 4. BESs in upgrading agricultural wastes to valuable products
  • 4.1. Production of acetate
  • 4.1.1. Enhancing acetate production in BESs
  • 4.2. Production of products other than acetate
  • 4.2.1. Production of ethanol in a BES anode
  • 4.2.2. Production of ethanol by reducing acetate
  • 4.2.3. Production of isopropanol from CO2
  • 4.2.4. Production of butanol by electrofermentation
  • 4.2.5. Production of butyrate from CO2
  • 4.2.6. Production of succinate/succinic acid
  • 4.2.7. Production of medium chain fatty acids (caproate and/or caprylate)
  • 4.2.8. Other BESs producing mixed products other than acetate
  • 5. BES for the recovery of nutrients from agricultural wastes
  • 5.1. Recovery of nitrogen
  • 5.1.1. Nitrogen recovery by BESs and innovative stripping methods
  • 5.1.2. Nitrogen recovery by BESs and transmembrane chemisorption (TMCS)
  • 5.1.3. Nitrogen recovery by BESs and forward osmosis (FO)
  • 5.1.4. The attention to the load ratio when using BESs for nitrogen recovery
  • 5.2. Recovery of phosphorus
  • 5.2.1. Enhanced phosphorus recovery by optimizing BES operational parameters
  • 5.2.2. Enhanced phosphorus recovery by other technical improvements
  • 5.2.3. Phosphorus recovery by MEC-induced calcium phosphate precipitation
  • 5.3. Simultaneous recovery of different nutrients
  • 6. General remarks
  • 7. BESs and the prospect of a circular agricultural economy.