|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1264271755 |
003 |
OCoLC |
005 |
20231120010559.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
210819s2021 enk o 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d OPELS
|d OCLCO
|d N$T
|d OCLCF
|d OCLCQ
|d OCLCO
|d SFB
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9780128232613
|q (electronic bk.)
|
020 |
|
|
|a 0128232617
|q (electronic bk.)
|
020 |
|
|
|z 9780128220986
|
020 |
|
|
|z 0128220988
|
035 |
|
|
|a (OCoLC)1264271755
|
050 |
|
4 |
|a TP248.27.M53
|
082 |
0 |
4 |
|a 660.62
|2 23
|
245 |
0 |
0 |
|a Recent advancement in microbial biotechnology :
|b agricultural and industrial approach /
|c edited by Surajit De Mandal, Ajit Kumar Passari.
|
260 |
|
|
|a London :
|b Academic Press,
|c 2021.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Includes index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Intro -- Recent Advancement in Microbial Biotechnology: Agricultural and Industrial Approach -- Copyright -- Contents -- Contributors -- Chapter 1: Microbial biofertilizers: Recent trends and future outlook -- Chapter outline -- 1. Introduction -- 2. Categories of biofertilizers -- 2.1. Nitrogen-fixing biofertilizers -- 2.2. Phosphate-solubilizing biofertilizer -- 2.3. Phosphate mobilizing biofertilizers -- 2.4. Plant growth-promoting biofertilizer -- 2.5. Potassium-solubilizing biofertilizer -- 2.6. Potassium-mobilizing biofertilizer -- 2.7. Sulfur-oxidizing biofertilizer -- 3. Symbiotic nitrogen-fixing bacteria -- 3.1. Rhizobium -- 3.2. Free-living nitrogen-fixing bacteria -- 3.2.1. Azotobacter -- 3.2.2. Azospirillum -- 4. Phosphorus-solubilizing biofertilizers -- 4.1. Bacillus -- 4.2. Pseudomonas -- 5. Free-living nitrogen-fixing cyanobacteria -- 6. Potassium-solubilizing microbes -- 7. Mycorrhiza -- 7.1. Ectomycorrhiza -- 7.2. Endomycorrhiza -- 7.2.1. Vesicular arbuscular mycorrhiza -- 8. Role of microbial fertilizers toward sustainable agriculture -- 9. Constraints and future outlook -- References -- Chapter 2: Phosphate-solubilizing bacteria: Recent trends and applications in agriculture -- Chapter outline -- 1. Introduction -- 2. Phosphorus in soil -- 3. Phosphate solubilization by plant growth-promoting microorganisms in plant rhizosphere -- 4. Phosphate-solubilizing bacteria as biofertilizers -- 5. Mechanisms of phosphate solubilization -- 5.1. Inorganic P solubilization -- 5.2. Organic phosphate mineralization by PSM -- 6. Effect of phosphate solubilizers on plant growth and crop yield -- 7. PSB application methods in agriculture -- 8. Recent developments -- 9. Conclusions -- References -- Chapter 3: Trichoderma spp.-Application and future prospects in agricultural industry -- Chapter outline -- 1. Introduction.
|
505 |
8 |
|
|a 2. Competency in the rhizosphere and plant root colonization -- 3. Trichoderma in bioremediation -- 4. Trichoderma in organic agriculture -- 5. Trichoderma formulations -- 6. Trichoderma in biofuels -- 7. Conclusion and future prospectives -- Acknowledgment -- References -- Chapter 4: Current status and future prospects of entomopathogenic fungi: A potential source of biopesticides -- Chapter outline -- 1. Introduction -- 2. Entomopathogenic fungi -- 3. Some of the current commercialized entomopathogenic fungi-based biopesticides -- 4. Entomopathogenic fungi on insect cadavers from the field and laboratory -- 5. The most utilized entomopathogenic fungi as biopesticides -- 5.1. Beauveria bassiana -- 5.1.1. Mode of action of Beauveria bassiana -- 5.1.2. Mass production of Beauveria bassiana -- 5.2. Metarhizium anisopliae -- 5.2.1. Mode of action of Metarhizium anisopliae -- 5.2.2. Mass production of Metarhizium anisopliae -- 6. The future of entomopathogenic fungi-based biopesticides -- 7. Studies on the compatibility of entomopathogenic fungi with other insecticides for IPM -- 8. Some of the newly described entomopathogenic fungi -- 9. Mass production of entomopathogenic fungi-based biopesticides -- 10. Application of molecular technology in EPF-based biopesticides -- 11. Conclusion -- References -- Chapter 5: Microbial fortification during vermicomposting: A brief review -- Chapter outline -- 1. Introduction -- 2. Influence of vermicomposting and aerobic composting processes on microbial dominance -- 2.1. Impact on bacterial profile -- 2.2. Impact on fungal growth -- 3. Influence of earthworm ecological categories on microbial dominance and their relative abundance -- 4. Influence of microbial structural change and temporal dominance on nutrient availability -- 4.1. Alteration of microbial respiration and biomass: Its impact on soil fertility.
|
505 |
8 |
|
|a 5. Microbial gene expression as a functional biomarker of dominance under vermicomposting systems -- 6. Effect on bioremediation -- 7. Conclusion -- Acknowledgment -- References -- Chapter 6: Potential of compost for sustainable crop production and soil health -- Chapter outline -- 1. Introduction -- 2. Composting, types, and phases -- 2.1. Process of composting -- 2.2. Types of composting -- 2.2.1. Aerobic composting -- 2.2.1.1. Heap method -- 2.2.1.2. Aerated windrow composting -- 2.2.1.3. In-vessel compositing -- 2.2.2. Vermicomposting -- 2.2.3. Anaerobic composting -- 2.2.3.1. Stacks or piles -- 2.2.3.2. Bokashi composting -- 2.2.3.3. Submerged composting -- 2.2.4. Mechanical composting (composting equipment) -- 2.3. Phases of composting -- 2.3.1. Mesophilic phase -- 2.3.2. Thermophilic phase -- 2.3.3. Cooling and curing phase -- 3. Biochemistry of composting -- 3.1. Composting and microorganisms -- 3.1.1. Bacteria -- 3.1.2. Actinomyces -- 3.1.3. Fungi -- 3.1.4. Worms -- 3.1.5. Rotifers -- 3.2. parameters -- 3.2.1. Aeration -- 3.2.2. C:N ratio -- 3.2.3. pH -- 3.2.4. Moisture content -- 3.2.5. Microbial population -- 3.2.6. Temperature -- 3.2.7. Enzymatic activity -- 3.3. Chemical reactions in the composting process -- 3.3.1. Nitrification -- 4. Composting and sustainable environment -- 4.1. Composting and bioremediation -- 5. Composting and sustainable soil health -- 6. Compost and sustainable crop production -- 7. Composting and biogas -- 8. Conclusion -- References -- Chapter 7: Fungal bioprocessing of lignocellulosic materials for biorefinery -- Chapter outline -- 1. Introduction -- 2. Lignocelullosic biomass and its chain value -- 2.1. Economy of biomaterials -- 2.2. Knowledge-based bioeconomy for biorefineries -- 2.3. Circular bioeconomy -- 2.4. Valorization of lignocellulosic biomass.
|
505 |
8 |
|
|a 3. Benefits of lignocellulosic materials for biorefineries -- 3.1. Availability of lignocellulose -- 3.2. Advantages of lignocellulosic feedstock for biorefineries -- 3.2.1. Technical and environmental advantages -- 3.2.2. Social and economic aspects -- 4. Lignocellulosic materials, structure, and characteristics -- 4.1. Cellulose -- 4.2. Hemicellulose -- 4.3. Lignin -- 5. Fungi and their lignocellulose degrading abilities -- 6. Genetic engineering to clear fungi the way to use alternative feedstocks -- 6.1. Genetic manipulation of microorganisms -- 6.2. Novel adaptations of microorganisms in the biorefinery -- 6.3. A successful strategy to implement fungal plant pathogens as itaconic acid producers -- 7. From recalcitrant biomass to a more accessible feedstock -- 8. Agroindustrial fruit pulp-rich peel and fishery residual biomasses -- 8.1. Complementing the ability to degrade fruit peel pectin-rich residual biomass -- 8.2. Chitin, from a protective shell to a valued product -- 9. Fungal bioprocessing to produce metabolites on biorefineries -- 9.1. Biorefinery processing -- 9.2. Pretreatment of lignocellulosic biomass -- 9.3. Bioprocessing of lignocellulosic feedstock -- 9.3.1. LSF bioreactors for bioprocessing lignocellulose -- 9.4. Bioprocessing types of lignocellulose -- 9.5. Production of fungal bioprocessed metabolites -- 10. Conclusions -- References -- Chapter 8: Bioelectrochemical technologies: Current and potential applications in agriculture resource recovery -- Chapter outline -- Abbreviations -- 1. Introduction -- 2. BESs -- 3. BESs in recovering energy from agricultural wastes -- 3.1. Direct generation of electricity -- 3.1.1. Electricity generation from animal wastes -- Treating animal wastewaters -- Treating animal waste slurries -- Treating raw solid animal wastes -- 3.1.2. Electricity generation from lignocellulosic wastes.
|
505 |
8 |
|
|a Treating corn-derived lignocellulosic wastes -- Treating wheat straw lignocellulosic wastes -- Treating rice mill wastewater -- 3.2. Production of fuel gases -- 3.2.1. Production of hydrogen -- Production of hydrogen directly from cellulosic biomass with MECs -- Production of hydrogen by integrating fermentation and MECs -- 3.2.2. Production of methane -- Production of methane via electrofermentation -- Production of methane via only the reduction of carbon dioxide -- 4. BESs in upgrading agricultural wastes to valuable products -- 4.1. Production of acetate -- 4.1.1. Enhancing acetate production in BESs -- 4.2. Production of products other than acetate -- 4.2.1. Production of ethanol in a BES anode -- 4.2.2. Production of ethanol by reducing acetate -- 4.2.3. Production of isopropanol from CO2 -- 4.2.4. Production of butanol by electrofermentation -- 4.2.5. Production of butyrate from CO2 -- 4.2.6. Production of succinate/succinic acid -- 4.2.7. Production of medium chain fatty acids (caproate and/or caprylate) -- 4.2.8. Other BESs producing mixed products other than acetate -- 5. BES for the recovery of nutrients from agricultural wastes -- 5.1. Recovery of nitrogen -- 5.1.1. Nitrogen recovery by BESs and innovative stripping methods -- 5.1.2. Nitrogen recovery by BESs and transmembrane chemisorption (TMCS) -- 5.1.3. Nitrogen recovery by BESs and forward osmosis (FO) -- 5.1.4. The attention to the load ratio when using BESs for nitrogen recovery -- 5.2. Recovery of phosphorus -- 5.2.1. Enhanced phosphorus recovery by optimizing BES operational parameters -- 5.2.2. Enhanced phosphorus recovery by other technical improvements -- 5.2.3. Phosphorus recovery by MEC-induced calcium phosphate precipitation -- 5.3. Simultaneous recovery of different nutrients -- 6. General remarks -- 7. BESs and the prospect of a circular agricultural economy.
|
650 |
|
0 |
|a Microbial biotechnology.
|
650 |
|
6 |
|a Biotechnologie microbienne.
|0 (CaQQLa)201-0164750
|
650 |
|
7 |
|a Microbial biotechnology
|2 fast
|0 (OCoLC)fst01019471
|
655 |
|
4 |
|a Electronics books.
|
700 |
1 |
|
|a De Mandal, Surajit.
|
700 |
1 |
|
|a Passari, Ajit Kumar.
|
776 |
0 |
8 |
|i Print version:
|z 0128220988
|z 9780128220986
|w (OCoLC)1231955803
|
776 |
0 |
8 |
|i Print version:
|t Recent advancement in microbial biotechnology
|z 9780128220986
|w (OCoLC)1259526757
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128220986
|z Texto completo
|