Cargando…

Photocatalystic systems by design : materials, mechanisms and applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Sakar, Mohan, Balakrishna, R. Geetha, Do, Trong-On
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : Elsevier, 2021.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Photocatalytic Systems by Design
  • Copyright Page
  • Contents
  • List of contributors
  • 1 Principles and mechanisms of photocatalysis
  • 1.1 Introduction and historical developments
  • 1.2 Semiconductors and photocatalysis
  • 1.3 Fundamentals of photocatalysis
  • 1.3.1 Mechanism
  • 1.3.1.1 Photocatalysis mechanism
  • 1.3.1.2 Oxidation mechanism
  • 1.3.1.3 Reduction mechanism
  • 1.3.2 Major advantages of photocatalysis
  • 1.3.3 Limitations of photocatalysis
  • 1.3.4 Operating parameters in photocatalytic processes
  • 1.4 Semiconductors that are mainly used as photocatalysts
  • 1.4.1 Metal oxides as photocatalysts
  • 1.4.2 Chalcogenides as photocatalysts
  • 1.4.2.1 Significance of chalcogenide nanomaterials
  • 1.5 Applications of the photocatalysis
  • 1.5.1 Superhydrophilic
  • 1.6 Future prospects
  • 1.7 Conclusions
  • References
  • 2 Cation-modified photocatalysts
  • 2.1 Fundamentals
  • 2.1.1 Electronic states
  • 2.1.2 Electron traps
  • 2.2 Transition metals
  • 2.2.1 Iron
  • 2.2.2 Copper
  • 2.2.3 Manganese
  • 2.2.4 Nickel
  • 2.3 Noble metals
  • 2.3.1 Silver
  • 2.3.2 Gold
  • 2.3.3 Platinum
  • 2.3.4 Palladium
  • 2.4 Rare earths
  • 2.4.1 Lanthanum
  • 2.4.2 Cerium
  • 2.4.3 Neodymium
  • References
  • 3 Anion-modified photocatalysts
  • 3.1 Introduction
  • 3.2 Synthesis methods of anion-doped photocatalysts
  • 3.2.1 Sol-gel method
  • 3.2.2 Hydrothermal/solvothermal method
  • 3.2.3 Coprecipitation method
  • 3.2.4 Sonochemical method
  • 3.2.5 Microwave method
  • 3.2.6 Solution combustion method
  • 3.3 Concept and mechanism of anion doping
  • 3.4 Anion-doped photocatalysts and applications
  • 3.4.1 Nitrogen-doped photocatalysts
  • 3.4.2 Sulfur-doped photocatalysts
  • 3.4.3 Fluoride-doped photocatalysts
  • 3.4.4 Carbon-doped photocatalysts
  • 3.4.5 Cl- and O-doped photocatalysts
  • 3.5 Conclusion and outlook
  • Acknowledgment
  • References.
  • Further reading
  • 4 Heterojunction-based photocatalyst
  • 4.1 Introduction to heterojunction photocatalysts
  • 4.2 Categories of heterojunction photocatalysts
  • 4.3 Semiconductor-semiconductor heterojunction
  • 4.3.1 TiO2-based heterojunction photocatalyst
  • 4.3.2 Other semiconductor-semiconductor heterojunction
  • 4.4 Semiconductor-metal heterojunction
  • 4.5 Semiconductor-carbon group heterojunction
  • 4.5.1 Carbon nanotubes
  • 4.5.2 Graphitic carbon nitride
  • 4.5.3 Activated carbon
  • 4.5.4 Graphene oxide
  • 4.6 Multicomponent heterojunction
  • 4.7 Conclusion and challenges
  • References
  • 5 Defective photocatalysts
  • 5.1 Introduction
  • 5.2 Types, origins, and mechanisms of defects in photocatalytic materials
  • 5.2.1 Anionic defects
  • 5.2.2 Cationic defects
  • 5.2.3 Dual ionic defects
  • 5.3 Mechanism of defects in photocatalysis
  • 5.4 Synthesis of defective photocatalysts
  • 5.4.1 Thermal treatment method
  • 5.4.2 Chemical reduction method
  • 5.4.3 Force-induced methods
  • 5.4.4 Other methods
  • 5.5 Effect of defective photocatalysts in their applications
  • 5.5.1 Pollutant degradations
  • 5.5.2 Water splitting
  • 5.5.3 CO2 reduction
  • 5.5.4 N2 fixation for NH3 production
  • 5.5.5 Other applications
  • 5.6 Summary and outlook
  • Acknowledgment
  • References
  • 6 Artificial Z-scheme-based photocatalysts: design strategies and approaches
  • 6.1 Introduction
  • 6.2 Types of heterojunctions
  • 6.2.1 Semiconductor-semiconductor (S-S) based heterojunctions
  • 6.2.2 Semiconductor-metal (S-M)based heterojunctions
  • 6.2.3 Semiconductor-carbon (S-C)based heterojunctions
  • 6.2.4 Multicomponent heterojunctions
  • 6.3 History of Z-scheme reactions
  • 6.4 Confirmation of direct Z-scheme mechanism
  • 6.4.1 Experimental
  • 6.4.2 Theoretical
  • 6.5 Synthesis and various design strategies for fabricating Z-scheme photocatalysts.
  • 6.5.1 Importance of geometrical configurations for direct Z-scheme photocatalysts
  • 6.5.1.1 Surface-embedded geometry
  • 6.5.1.2 Janus-type configuration
  • 6.5.1.3 Core-shell-type architecture
  • 6.6 Future perspectives in developing direct Z-scheme photocatalytic systems
  • References
  • 7 Plasmonic photocatalysis: an extraordinary way to harvest visible light
  • 7.1 Introduction
  • 7.1.1 Localized surface plasmon resonance
  • 7.1.1.1 Typical advantages of localized surface plasmonic resonance in plasmonic photocatalysis
  • 7.1.2 Basics of plasmonic photocatalysis
  • 7.1.2.1 Proposed principles/mechanisms for energy transfer between noble-metal nanoparticles and semiconductor in plasmonic...
  • 7.1.2.1.1 Light scattering/trapping
  • 7.1.2.1.2 Plasmon-induced resonance energy transfer
  • 7.1.2.1.3 Hot-electron injection
  • 7.1.2.1.3.1 Indirect electron transfer
  • 7.1.2.1.3.2 Direct electron transfer
  • 7.2 Synthesis methods for noble-metal nanoparticles
  • 7.2.1 Photo-deposition
  • 7.2.2 Impregnation
  • 7.2.3 Chemical reduction
  • 7.2.4 Micro-emulsion technique
  • 7.2.5 Hydrothermal technique
  • 7.2.6 Electro-deposition
  • 7.2.7 Atomic-layer deposition
  • 7.2.8 Sputtering
  • 7.2.9 Electro-spraying
  • 7.2.10 Inert-gas condensation
  • 7.2.11 Biogenic synthesis
  • 7.3 Applications of plasmonic photocatalysis
  • 7.3.1 Wastewater treatment
  • 7.3.2 H2 generation
  • 7.3.3 CO2 reduction
  • 7.3.4 Production of fine chemicals
  • 7.3.5 Disinfection and antimicrobial activity
  • 7.3.6 N2 fixation
  • 7.4 Comparison of photocatalytic performances for monometallic, bimetallic, and trimetallic plasmonic photocatalysts
  • 7.5 Principle of plasmonic photocatalysis
  • 7.6 Conclusions and future perspective
  • References
  • 8 Cocatalyst-integrated photocatalysts for solar-driven hydrogen and oxygen production
  • 8.1 Introduction
  • 8.2 Fundamental of cocatalysts.
  • 8.3 Cocatalysts for sun-light driven hydrogen production and overall water splitting
  • 8.3.1 Metal-based cocatalysts
  • 8.3.1.1 Single metal atom cocatalysts
  • 8.3.1.2 Bimetallic cocatalysts
  • 8.3.2 Sulfur based cocatalysts
  • 8.3.2.1 MoS2
  • 8.3.2.2 NiSx cocatalyst
  • 8.3.3 MXene-based cocatalysts
  • 8.3.4 Graphene-based cocatalysts
  • 8.3.5 P-based cocatalysts
  • 8.3.5.1 Transition metal phosphide
  • 8.3.5.2 Phosphorene
  • 8.3.5.3 Phosphate-containing medium
  • 8.3.6 Metal-metal oxide core-shell cocatalysts
  • 8.4 Oxidation cocatalysts in the multiple component systems
  • 8.4.1 RuO2 cocatalysts
  • 8.4.2 CoOx cocatalysts
  • 8.4.3 IrOx cocatalysts
  • 8.5 Conclusion
  • References
  • 9 Materials and features of ferroelectric photocatalysts: the case of multiferroic BiFeO3
  • 9.1 Introduction
  • 9.2 Preparation techniques used for the synthesis of BFO
  • 9.3 Photocatalytic mechanisms in BiFeO3
  • 9.4 Bandgap engineering in multiferroic BiFeO3
  • 9.5 Effect of d-block dopants on BiFeO3
  • 9.5.1 Effect of scandium
  • 9.5.2 Effect of titanium
  • 9.5.3 Effect of chromium
  • 9.5.4 Effect of manganese
  • 9.5.5 Effect of cobalt
  • 9.5.6 Effect of nickel
  • 9.5.7 Effect of copper
  • 9.5.8 Effect of zinc
  • 9.5.9 Effect of yttrium
  • 9.5.10 Effect of zirconium
  • 9.5.11 Effect niobium
  • 9.5.12 Effect of molybdenum
  • 9.5.13 Effect of ruthenium
  • 9.5.14 Effect of palladium
  • 9.5.15 Effect of silver
  • 9.5.16 Effect of cadmium
  • 9.5.17 Effect of lanthanum
  • 9.5.18 Effect of tantalum
  • 9.5.19 Effect of tungsten
  • 9.5.20 Effect of platinum
  • 9.5.21 Effect of gold
  • 9.6 Summary
  • Acknowledgment
  • References
  • 10 Metal organic framework-based photocatalysts for hydrogen production
  • 10.1 Introduction of metal-organic frameworks
  • 10.1.1 Historical developments
  • 10.1.2 Properties of metal organic frameworks.
  • 10.2 Synthesis strategies of metal organic frameworks
  • 10.2.1 Electrochemical synthesis
  • 10.2.2 Microwave synthesis
  • 10.2.3 Mechanochemical synthesis
  • 10.2.4 Spray-drying synthesis
  • 10.3 Metal-organic frameworks as photocatalysts
  • 10.3.1 Metal organic frameworks as cocatalysts
  • 10.3.2 Metal organic frameworks as sensitizers
  • 10.4 Challenges and future prospects
  • Acknowledgment
  • References
  • 11 Transition metal chalcogenide-based photocatalysts for small-molecule activation
  • 11.1 Introduction
  • 11.2 Structural classification of transition metal chalcogenides
  • 11.2.1 Binary structure of transition metal chalcogenides
  • 11.2.2 Ternary structure of transition metal chalcogenides
  • 11.2.3 Quaternary structure of transition metal chalcogenides
  • 11.3 Methods for the enhancement of photocatalytic performance of transition metal chalcogenides
  • 11.3.1 Elemental doping
  • 11.3.2 Surface functionalization
  • 11.3.3 Heterojunction
  • 11.4 Synthesis methods for transition metal chalcogenide
  • 11.4.1 Top-down approach
  • 11.4.1.1 Micromechanical exfoliation
  • 11.4.1.2 Ultrasonic exfoliation
  • 11.4.1.3 Ion-exchange exfoliation
  • 11.4.1.4 Lithium-intercalated exfoliation
  • 11.4.2 Bottom-up approach
  • 11.4.2.1 Hydro/solvothermal method
  • 11.4.2.2 Template method
  • 11.4.2.3 Microwave-assisted method
  • 11.4.2.4 Chemical vapor deposition method
  • 11.5 Applications
  • 11.5.1 Catalysis
  • 11.5.1.1 Hydrogen evolution reaction
  • 11.5.1.1.1 Choice and selection of photocatalyst for water splitting
  • 11.5.1.1.2 Water-splitting mechanism
  • 11.5.1.1.3 Role of transition metal chalcogenide for water splitting
  • 11.5.1.1.4 Electronics
  • 11.5.1.1.5 Degradation of organic pollutants
  • 11.6 Conclusion
  • References
  • 12 MXene-based photocatalysts
  • 12.1 Principle of heterogeneous photocatalysis.