|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1264211224 |
003 |
OCoLC |
005 |
20231120010559.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
210818s2021 ne o 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d OPELS
|d OCLCO
|d OCLCF
|d UKMGB
|d UKAHL
|d OCLCO
|d OCLCQ
|d K6U
|d SFB
|d OCLCQ
|
015 |
|
|
|a GBC180599
|2 bnb
|
016 |
7 |
|
|a 020202622
|2 Uk
|
019 |
|
|
|a 1272870868
|a 1287272133
|a 1287872329
|
020 |
|
|
|a 9780128209226
|q (electronic bk.)
|
020 |
|
|
|a 0128209224
|q (electronic bk.)
|
020 |
|
|
|z 9780128205327
|
020 |
|
|
|z 0128205326
|
035 |
|
|
|a (OCoLC)1264211224
|z (OCoLC)1272870868
|z (OCoLC)1287272133
|z (OCoLC)1287872329
|
050 |
|
4 |
|a QD716.P45
|
082 |
0 |
4 |
|a 541.395
|2 23
|
245 |
0 |
0 |
|a Photocatalystic systems by design :
|b materials, mechanisms and applications /
|c edited by Mohan Sakar, R. Geetha Balakrishna and Trong-On Do.
|
260 |
|
|
|a Amsterdam, Netherlands :
|b Elsevier,
|c 2021.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Includes index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover -- Photocatalytic Systems by Design -- Copyright Page -- Contents -- List of contributors -- 1 Principles and mechanisms of photocatalysis -- 1.1 Introduction and historical developments -- 1.2 Semiconductors and photocatalysis -- 1.3 Fundamentals of photocatalysis -- 1.3.1 Mechanism -- 1.3.1.1 Photocatalysis mechanism -- 1.3.1.2 Oxidation mechanism -- 1.3.1.3 Reduction mechanism -- 1.3.2 Major advantages of photocatalysis -- 1.3.3 Limitations of photocatalysis -- 1.3.4 Operating parameters in photocatalytic processes -- 1.4 Semiconductors that are mainly used as photocatalysts -- 1.4.1 Metal oxides as photocatalysts -- 1.4.2 Chalcogenides as photocatalysts -- 1.4.2.1 Significance of chalcogenide nanomaterials -- 1.5 Applications of the photocatalysis -- 1.5.1 Superhydrophilic -- 1.6 Future prospects -- 1.7 Conclusions -- References -- 2 Cation-modified photocatalysts -- 2.1 Fundamentals -- 2.1.1 Electronic states -- 2.1.2 Electron traps -- 2.2 Transition metals -- 2.2.1 Iron -- 2.2.2 Copper -- 2.2.3 Manganese -- 2.2.4 Nickel -- 2.3 Noble metals -- 2.3.1 Silver -- 2.3.2 Gold -- 2.3.3 Platinum -- 2.3.4 Palladium -- 2.4 Rare earths -- 2.4.1 Lanthanum -- 2.4.2 Cerium -- 2.4.3 Neodymium -- References -- 3 Anion-modified photocatalysts -- 3.1 Introduction -- 3.2 Synthesis methods of anion-doped photocatalysts -- 3.2.1 Sol-gel method -- 3.2.2 Hydrothermal/solvothermal method -- 3.2.3 Coprecipitation method -- 3.2.4 Sonochemical method -- 3.2.5 Microwave method -- 3.2.6 Solution combustion method -- 3.3 Concept and mechanism of anion doping -- 3.4 Anion-doped photocatalysts and applications -- 3.4.1 Nitrogen-doped photocatalysts -- 3.4.2 Sulfur-doped photocatalysts -- 3.4.3 Fluoride-doped photocatalysts -- 3.4.4 Carbon-doped photocatalysts -- 3.4.5 Cl- and O-doped photocatalysts -- 3.5 Conclusion and outlook -- Acknowledgment -- References.
|
505 |
8 |
|
|a Further reading -- 4 Heterojunction-based photocatalyst -- 4.1 Introduction to heterojunction photocatalysts -- 4.2 Categories of heterojunction photocatalysts -- 4.3 Semiconductor-semiconductor heterojunction -- 4.3.1 TiO2-based heterojunction photocatalyst -- 4.3.2 Other semiconductor-semiconductor heterojunction -- 4.4 Semiconductor-metal heterojunction -- 4.5 Semiconductor-carbon group heterojunction -- 4.5.1 Carbon nanotubes -- 4.5.2 Graphitic carbon nitride -- 4.5.3 Activated carbon -- 4.5.4 Graphene oxide -- 4.6 Multicomponent heterojunction -- 4.7 Conclusion and challenges -- References -- 5 Defective photocatalysts -- 5.1 Introduction -- 5.2 Types, origins, and mechanisms of defects in photocatalytic materials -- 5.2.1 Anionic defects -- 5.2.2 Cationic defects -- 5.2.3 Dual ionic defects -- 5.3 Mechanism of defects in photocatalysis -- 5.4 Synthesis of defective photocatalysts -- 5.4.1 Thermal treatment method -- 5.4.2 Chemical reduction method -- 5.4.3 Force-induced methods -- 5.4.4 Other methods -- 5.5 Effect of defective photocatalysts in their applications -- 5.5.1 Pollutant degradations -- 5.5.2 Water splitting -- 5.5.3 CO2 reduction -- 5.5.4 N2 fixation for NH3 production -- 5.5.5 Other applications -- 5.6 Summary and outlook -- Acknowledgment -- References -- 6 Artificial Z-scheme-based photocatalysts: design strategies and approaches -- 6.1 Introduction -- 6.2 Types of heterojunctions -- 6.2.1 Semiconductor-semiconductor (S-S) based heterojunctions -- 6.2.2 Semiconductor-metal (S-M)based heterojunctions -- 6.2.3 Semiconductor-carbon (S-C)based heterojunctions -- 6.2.4 Multicomponent heterojunctions -- 6.3 History of Z-scheme reactions -- 6.4 Confirmation of direct Z-scheme mechanism -- 6.4.1 Experimental -- 6.4.2 Theoretical -- 6.5 Synthesis and various design strategies for fabricating Z-scheme photocatalysts.
|
505 |
8 |
|
|a 6.5.1 Importance of geometrical configurations for direct Z-scheme photocatalysts -- 6.5.1.1 Surface-embedded geometry -- 6.5.1.2 Janus-type configuration -- 6.5.1.3 Core-shell-type architecture -- 6.6 Future perspectives in developing direct Z-scheme photocatalytic systems -- References -- 7 Plasmonic photocatalysis: an extraordinary way to harvest visible light -- 7.1 Introduction -- 7.1.1 Localized surface plasmon resonance -- 7.1.1.1 Typical advantages of localized surface plasmonic resonance in plasmonic photocatalysis -- 7.1.2 Basics of plasmonic photocatalysis -- 7.1.2.1 Proposed principles/mechanisms for energy transfer between noble-metal nanoparticles and semiconductor in plasmonic... -- 7.1.2.1.1 Light scattering/trapping -- 7.1.2.1.2 Plasmon-induced resonance energy transfer -- 7.1.2.1.3 Hot-electron injection -- 7.1.2.1.3.1 Indirect electron transfer -- 7.1.2.1.3.2 Direct electron transfer -- 7.2 Synthesis methods for noble-metal nanoparticles -- 7.2.1 Photo-deposition -- 7.2.2 Impregnation -- 7.2.3 Chemical reduction -- 7.2.4 Micro-emulsion technique -- 7.2.5 Hydrothermal technique -- 7.2.6 Electro-deposition -- 7.2.7 Atomic-layer deposition -- 7.2.8 Sputtering -- 7.2.9 Electro-spraying -- 7.2.10 Inert-gas condensation -- 7.2.11 Biogenic synthesis -- 7.3 Applications of plasmonic photocatalysis -- 7.3.1 Wastewater treatment -- 7.3.2 H2 generation -- 7.3.3 CO2 reduction -- 7.3.4 Production of fine chemicals -- 7.3.5 Disinfection and antimicrobial activity -- 7.3.6 N2 fixation -- 7.4 Comparison of photocatalytic performances for monometallic, bimetallic, and trimetallic plasmonic photocatalysts -- 7.5 Principle of plasmonic photocatalysis -- 7.6 Conclusions and future perspective -- References -- 8 Cocatalyst-integrated photocatalysts for solar-driven hydrogen and oxygen production -- 8.1 Introduction -- 8.2 Fundamental of cocatalysts.
|
505 |
8 |
|
|a 8.3 Cocatalysts for sun-light driven hydrogen production and overall water splitting -- 8.3.1 Metal-based cocatalysts -- 8.3.1.1 Single metal atom cocatalysts -- 8.3.1.2 Bimetallic cocatalysts -- 8.3.2 Sulfur based cocatalysts -- 8.3.2.1 MoS2 -- 8.3.2.2 NiSx cocatalyst -- 8.3.3 MXene-based cocatalysts -- 8.3.4 Graphene-based cocatalysts -- 8.3.5 P-based cocatalysts -- 8.3.5.1 Transition metal phosphide -- 8.3.5.2 Phosphorene -- 8.3.5.3 Phosphate-containing medium -- 8.3.6 Metal-metal oxide core-shell cocatalysts -- 8.4 Oxidation cocatalysts in the multiple component systems -- 8.4.1 RuO2 cocatalysts -- 8.4.2 CoOx cocatalysts -- 8.4.3 IrOx cocatalysts -- 8.5 Conclusion -- References -- 9 Materials and features of ferroelectric photocatalysts: the case of multiferroic BiFeO3 -- 9.1 Introduction -- 9.2 Preparation techniques used for the synthesis of BFO -- 9.3 Photocatalytic mechanisms in BiFeO3 -- 9.4 Bandgap engineering in multiferroic BiFeO3 -- 9.5 Effect of d-block dopants on BiFeO3 -- 9.5.1 Effect of scandium -- 9.5.2 Effect of titanium -- 9.5.3 Effect of chromium -- 9.5.4 Effect of manganese -- 9.5.5 Effect of cobalt -- 9.5.6 Effect of nickel -- 9.5.7 Effect of copper -- 9.5.8 Effect of zinc -- 9.5.9 Effect of yttrium -- 9.5.10 Effect of zirconium -- 9.5.11 Effect niobium -- 9.5.12 Effect of molybdenum -- 9.5.13 Effect of ruthenium -- 9.5.14 Effect of palladium -- 9.5.15 Effect of silver -- 9.5.16 Effect of cadmium -- 9.5.17 Effect of lanthanum -- 9.5.18 Effect of tantalum -- 9.5.19 Effect of tungsten -- 9.5.20 Effect of platinum -- 9.5.21 Effect of gold -- 9.6 Summary -- Acknowledgment -- References -- 10 Metal organic framework-based photocatalysts for hydrogen production -- 10.1 Introduction of metal-organic frameworks -- 10.1.1 Historical developments -- 10.1.2 Properties of metal organic frameworks.
|
505 |
8 |
|
|a 10.2 Synthesis strategies of metal organic frameworks -- 10.2.1 Electrochemical synthesis -- 10.2.2 Microwave synthesis -- 10.2.3 Mechanochemical synthesis -- 10.2.4 Spray-drying synthesis -- 10.3 Metal-organic frameworks as photocatalysts -- 10.3.1 Metal organic frameworks as cocatalysts -- 10.3.2 Metal organic frameworks as sensitizers -- 10.4 Challenges and future prospects -- Acknowledgment -- References -- 11 Transition metal chalcogenide-based photocatalysts for small-molecule activation -- 11.1 Introduction -- 11.2 Structural classification of transition metal chalcogenides -- 11.2.1 Binary structure of transition metal chalcogenides -- 11.2.2 Ternary structure of transition metal chalcogenides -- 11.2.3 Quaternary structure of transition metal chalcogenides -- 11.3 Methods for the enhancement of photocatalytic performance of transition metal chalcogenides -- 11.3.1 Elemental doping -- 11.3.2 Surface functionalization -- 11.3.3 Heterojunction -- 11.4 Synthesis methods for transition metal chalcogenide -- 11.4.1 Top-down approach -- 11.4.1.1 Micromechanical exfoliation -- 11.4.1.2 Ultrasonic exfoliation -- 11.4.1.3 Ion-exchange exfoliation -- 11.4.1.4 Lithium-intercalated exfoliation -- 11.4.2 Bottom-up approach -- 11.4.2.1 Hydro/solvothermal method -- 11.4.2.2 Template method -- 11.4.2.3 Microwave-assisted method -- 11.4.2.4 Chemical vapor deposition method -- 11.5 Applications -- 11.5.1 Catalysis -- 11.5.1.1 Hydrogen evolution reaction -- 11.5.1.1.1 Choice and selection of photocatalyst for water splitting -- 11.5.1.1.2 Water-splitting mechanism -- 11.5.1.1.3 Role of transition metal chalcogenide for water splitting -- 11.5.1.1.4 Electronics -- 11.5.1.1.5 Degradation of organic pollutants -- 11.6 Conclusion -- References -- 12 MXene-based photocatalysts -- 12.1 Principle of heterogeneous photocatalysis.
|
650 |
|
0 |
|a Photocatalysis.
|
650 |
|
6 |
|a Photocatalyse.
|0 (CaQQLa)201-0247110
|
650 |
|
7 |
|a Photocatalysis.
|2 fast
|0 (OCoLC)fst01061500
|
700 |
1 |
|
|a Sakar, Mohan.
|
700 |
1 |
|
|a Balakrishna, R. Geetha.
|
700 |
1 |
|
|a Do, Trong-On.
|
776 |
0 |
8 |
|i Print version:
|t Photocatalystic systems by design.
|d Amsterdam, Netherlands : Elsevier, 2021
|z 0128205326
|z 9780128205327
|w (OCoLC)1144094459
|
776 |
0 |
8 |
|i Print version:
|t Photocatalytic systems by design
|z 9780128205327
|w (OCoLC)1255871979
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128205327
|z Texto completo
|