Cargando…

Composite solutions for ballistics /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Nawab, Yasir, Sapuan, S. M., Shaker, Khubab
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] : Woodhead Publishing, 2021.
Colección:Woodhead Publishing series in composites science and engineering.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Composite Solutions for Ballistics
  • Copyright Page
  • Contents
  • List of contributors
  • About the editors
  • Preface
  • Acknowledgment
  • A. Overview of ballistics
  • 1 State-of-the-art review on recent advances and perspectives of ballistic composite materials
  • 1.1 Introduction
  • 1.2 History of ballistics
  • 1.3 Kinds of ballistic protective materials and equipment
  • 1.4 Applications of ballistic study
  • 1.4.1 Evolution of materials
  • 1.4.1.1 Ultrahigh-molecular-weight polyethylene
  • 1.4.1.2 Aramid fibers
  • 1.4.1.3 Kevlar composites
  • 1.4.1.4 Ballistic fiberglass
  • 1.4.1.5 Carbon fiber
  • 1.4.1.6 Natural fibers
  • 1.4.1.7 High-density polyethylene/UHMWPE polymer composite
  • 1.4.1.8 Ceramic fiber
  • 1.4.1.9 Ballistic fabric
  • 1.4.2 Mechanics of ballistics
  • 1.4.2.1 Experimental approach
  • 1.4.2.2 Analytical approaches
  • 1.4.2.3 Numerical modeling approach
  • 1.4.2.4 Empirical methods
  • 1.4.2.5 Combinations of two or more approaches
  • 1.4.2.6 Others
  • Mechanics of Kevlar composites
  • Impact behavior of HDPE/UHMWPE polymer composite
  • 1.4.3 Clinical and forensic study
  • 1.4.3.1 Ballistic response of the bullet
  • 1.4.3.2 Energy transfer characteristics of gunshot wounds
  • 1.4.3.3 Mechanisms of injuries for gunshot
  • Momentum and energy of the projectile
  • Pressure wave and temporary cavitation
  • Yawing, fragmenting, and tumbling
  • Direct damage of tissue
  • Cavitation
  • Bone injuries
  • Head injuries
  • 1.5 Conclusions
  • Acknowledgments
  • References
  • 2 Materials selection for ballistics
  • 2.1 Background
  • 2.2 Ballistic fabrics
  • 2.2.1 Energy dissipation mechanism
  • 2.2.2 Fabric features affecting ballistic performance
  • 2.2.3 Quantification of ballistic fabric performance
  • 2.2.4 Property deterioration due to temperature and ultraviolet radiation
  • 2.2.5 Enhancement of ballistic performance.
  • 2.2.6 Three-dimensional woven architecture
  • 2.2.7 Innovative fabric systems
  • 2.3 Laminated composites and integral armor
  • 2.3.1 Integral armor
  • 2.3.1.1 Alumina/aluminum-laminated composite structure
  • 2.3.1.2 Fiber metal laminates
  • 2.3.1.3 Aluminum foam
  • 2.3.2 Flexible composite armor
  • 2.3.2.1 Fabric systems
  • 2.3.2.2 Polymer composites
  • 2.3.2.3 Blunt trauma reduction armor
  • 2.3.3 Nanomaterial systems and futuristic design concepts for ballistics
  • 2.3.3.1 Nanocomposites
  • 2.3.3.2 Ballistic performance of CNTs
  • 2.3.3.3 CNT hybrid composite armor
  • 2.3.3.4 Kevlar/nylon and CNT fibers/nylon composites
  • 2.3.3.5 Inorganic fullerene nanotubes
  • 2.3.3.6 Futuristic design concepts
  • 2.3.3.6.1 Micro-truss armor
  • 2.3.3.6.2 Biomimetic material systems
  • 2.3.3.6.3 Natural fiber composites
  • 2.4 An assessment of composite and hybrid armor systems
  • 2.5 Digest and remarks
  • References
  • 3 Levels of ballistic protection and testing
  • 3.1 General introduction
  • 3.2 Ballistic protective materials
  • 3.3 Ballistic behavior of personal protective equipment
  • 3.4 Levels of personal ballistic protection
  • 3.4.1 NIJ Standard-0101.04-Ballistic Resistance of Personal Body Armor (2001)
  • 3.4.2 NIJ Standard-0101.06-Ballistic Resistance of Body Armor (2008)
  • 3.4.3 NIJ Standard-0101.07-Ballistic Resistance of Body Armor
  • 3.4.4 UK Home Office Scientific Development Branch (HOSDB) standard
  • 3.4.5 VPAM BSW 2006-Ballistic Protective Vest
  • 3.4.6 GOST R 50744-95 Armored Clothing, Classification and General Technical Requirements standard
  • 3.4.7 NATO STANAG 2920 AEP Ed.3 Standards
  • 3.4.8 NIJ Standard-0106.01-Ballistic Helmets (1981)
  • 3.4.9 VPAM HVN 2009 Bullet-resistant helmet with visor and neck guard
  • 3.4.10 NIJ Standard-0108.01-Ballistic Resistant Protective Materials (1985).
  • 3.4.11 VPAM APR 2006-General basis for ballistic material, construction and product testing threat/protection levels
  • 3.4.12 AS/NZS 2343:1997 Standard-Australian and New Zealand standards
  • 3.4.13 German Schutzklasse Standard Edition 2008
  • 3.5 Ballistic testing on personal protective equipment
  • 3.5.1 Body armor system
  • 3.5.1.1 Number of samples
  • 3.5.1.2 Test configuration
  • 3.5.1.3 Analysis
  • 3.5.2 Ballistic helmets
  • 3.5.2.1 Testing requirement
  • 3.5.2.2 Method/setup
  • Ballistic penetration test
  • 3.6 Measurement of V50 performance of personal ballistic armor
  • 3.6.1 MIL-STD-662F-V50 Ballistic Test for Armor
  • 3.6.1.1 Ballistic limit
  • 3.6.1.2 V50 for ballistic helmet
  • 3.6.1.3 V50 ballistic limit for explosive ordnance disposal (EOD)
  • 3.7 Ammunition for PPE ballistic testing
  • 3.7.1 Ammunition component
  • 3.7.1.1 Cartridge
  • Functional type of cartridges
  • Cartridge headstamp
  • Cartridge case type and shape
  • Case composition
  • 3.7.2 Projectile
  • 3.7.2.1 Projectile shape, weight, and jacket
  • 3.8 Summary
  • Acknowledgments
  • References
  • Further reading
  • 4 Personal and structural protection
  • 4.1 Background
  • 4.2 Personal protection
  • 4.2.1 Body armor
  • 4.2.1.1 Background
  • 4.2.1.2 Carrier vest
  • 4.2.1.3 Soft armor panel
  • 4.2.1.4 Hard armor plate
  • 4.2.1.5 Types of body armor/vest
  • American vest
  • European vest
  • Asian vest
  • Police force vest
  • 4.2.1.6 Testing of body armors
  • V50 testing for ballistic vest
  • NIJ testing for ballistic vest
  • 4.2.2 Combat helmet
  • 4.2.2.1 Background
  • 4.2.2.2 Types of combat helmet
  • American helmet
  • British helmet
  • French helmet
  • Australian helmet
  • Russian helmet
  • 4.2.2.3 Testing standards for combat helmets
  • NIJ testing for combat helmet
  • V50 testing for combat helmet
  • 4.2.3 Ballistic boots
  • 4.2.3.1 Spider boot
  • 4.2.3.2 Overboot.
  • 4.2.3.3 Testing of ballistic boots
  • 4.2.4 Shields
  • 4.2.4.1 Background
  • 4.2.4.2 Movable shield
  • 4.2.4.3 Handheld shield
  • 4.2.4.4 Testing of ballistic shields
  • 4.2.5 Bomb blanket
  • 4.2.5.1 Testing of bomb blanket
  • 4.3 Structural protection
  • 4.3.1 Ballistic panels
  • 4.3.2 Ballistic doors and windows
  • 4.3.3 Vehicular protection
  • 4.3.3.1 Type of ballistic vehicles
  • Tank
  • Multipurpose, future combat system, expeditionary fighting vehicle, and armored fighting vehicle
  • Armored aircrafts
  • Armored police and civilian vehicles
  • 4.4 Properties required for an armor
  • References
  • B. Composite solutions
  • 5 Polymer composites
  • 5.1 Introduction
  • 5.2 Matrix in polymer composite
  • 5.3 Reinforcement in polymer composite
  • 5.3.1 Types of reinforcements (material)
  • 5.3.2 Common physical forms of reinforcement
  • 5.4 Polymer composite as advance solutions for ballistic applications
  • 5.4.1 Working principles
  • 5.4.2 Types of materials in ballistic applications
  • 5.4.3 Ballistic performance of composite materials
  • 5.4.4 Composite solutions for ballistic protection
  • 5.4.5 Thermoplastic composites for ballistic applications
  • 5.5 Limitations
  • References
  • 6 Ceramic composites
  • 6.1 Introduction
  • 6.1.1 Ceramic as matrix
  • 6.1.1.1 Melt infiltration process
  • 6.1.1.2 Hot pressing
  • 6.1.1.3 Reaction sintering
  • 6.1.1.4 Chemical vapor infiltration
  • 6.1.1.5 Direct melt oxidation
  • 6.1.1.6 Sol-gel processing
  • 6.1.2 Ceramic as reinforcement
  • 6.1.2.1 Oxide fibers
  • 6.1.2.2 Nonoxide-based fibers
  • 6.2 Alumina-based composite armors
  • 6.3 Silicon carbide-based composite structures
  • 6.4 Boron carbide-based composite structures
  • 6.5 Nanocomposite-based ceramic coatings
  • 6.6 Transparent ceramic systems
  • 6.7 Fracture analysis of ceramic-based composite materials.
  • 6.8 Global market of ceramic composite in ballistics
  • 6.9 Limitations in ballistic efficiency of ceramic composite armor
  • 6.10 Conclusion
  • References
  • 7 Composite fabrication and joining
  • 7.1 Introduction
  • 7.2 Composite fabrication techniques
  • 7.2.1 Hand layup
  • 7.2.2 Vacuum resin infusion
  • 7.2.3 Resin transfer molding
  • 7.2.4 Prepregs
  • 7.2.5 Compression molding
  • 7.2.6 Autoclave
  • 7.2.7 Selection of fabrication techniques
  • 7.2.8 Postprocessing of ballistic composites
  • 7.3 Material/structure wise fabrication techniques
  • 7.3.1 Para-aramid composite
  • 7.3.2 Self-reinforced composite
  • 7.3.3 3D woven composites
  • 7.3.4 Hybrid composites
  • 7.4 Joining techniques for ballistic protection
  • 7.4.1 Ceramic-polymer composite joining
  • 7.4.2 Ceramic-metal joining
  • References
  • 8 Use of auxetic material for impact/ballistic applications
  • 8.1 Auxetic materials
  • 8.2 Types of auxetic materials
  • 8.2.1 Naturally occurring auxetic biomaterials
  • 8.2.2 Auxetic polymers
  • 8.3 Commonly used auxetic structures in impact applications
  • 8.3.1 Textile auxetic structures
  • 8.3.1.1 Intrinsic auxetic textile
  • 8.3.1.2 Extrinsic auxetic textile
  • 8.3.1.3 Auxetic yarns
  • 8.3.1.4 Auxetic woven fabrics
  • 8.3.1.5 2D auxetic structure weave design
  • 8.3.1.6 Knitted auxetic fabrics
  • 8.4 Shear thickening fluid (STF)
  • 8.4.1 Mechanism of formation
  • 8.4.2 Composition and fabrication methods of STF
  • 8.4.2.1 Particle-based shear thickening systems
  • Materials and methodology
  • Applications
  • 8.4.2.2 Nonparticle-based shear thickening systems
  • Materials and methodology
  • Applications
  • 8.4.2.3 Sonochemical method
  • Materials and methodology
  • Applications
  • 8.4.3 Characterization of shear thickening fluids
  • 8.4.3.1 Rheological characterization
  • 8.4.3.2 Thermogravimetric analysis (TGA).