Assisted history matching for unconventional reservoirs /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, MA :
Gulf Professional Publishing,
2021.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Assisted History Matching for Unconventional Reservoirs
- Copyright Page
- Dedication
- Contents
- About the authors
- Preface
- 1 Introduction and literature review
- 1.1 Motivation
- 1.2 Literature review
- 1.2.1 History matching algorithms
- 1.2.2 Fracture modeling
- 1.2.3 Other challenges in unconventional reservoirs
- 1.3 Assisted history matching in unconventional reservoirs
- References
- 2 Methodology
- 2.1 Assisted history-matching framework
- 2.2 Embedded discrete fracture model
- 2.3 Reservoir simulator
- 2.3.1 Multiphase flow governing equations
- 2.4 Proxy model
- 2.4.1 k-nearest neighbors
- 2.4.2 Neural networks
- 2.5 Proxy-based Markov chain Monte Carlo algorithm
- 2.5.1 Markov chain Monte Carlo
- 2.5.2 Proxy-based MCMC algorithm and stopping criteria
- 2.6 Steps in assisted history-matching workflow
- 2.6.1 Parameters identification and screening
- 2.6.1.1 Multiple objective functions
- 2.6.2 History matching
- 2.6.3 Probabilistic forecasting
- References
- 3 Validation of assisted history matching for a synthetic shale gas well
- 3.1 Introduction
- 3.2 Case 1: hydraulic fractures only
- 3.2.1 Reservoir model
- 3.2.2 History matching
- 3.2.3 Posterior distribution
- 3.2.4 Production forecast
- 3.2.5 Pressure visualization
- 3.3 Case 2: hydraulic fractures and natural fractures
- 3.3.1 Reservoir model
- 3.3.2 History matching
- 3.3.3 Posterior distribution
- 3.3.4 Production forecast
- 3.3.5 Pressure visualization
- 3.4 Remarks
- 4 Shale-gas well in Longmaxi Shale with bi-wing hydraulic fractures
- 4.1 Introduction
- 4.2 Reservoir model
- 4.3 Comparison between EDFM and LGR
- 4.4 Parameters identification and screening
- 4.5 History matching
- 4.6 Probabilistic production forecasting
- 4.7 Remarks
- References
- 5 Shale-gas well in Marcellus Shale with bi-wing hydraulic fractures
- 5.1 Introduction
- 5.2 Reservoir model
- 5.3 Sensitivity analysis
- 5.4 History matching
- 5.5 Posterior distribution of matrix and fracture parameters
- 5.6 Probabilistic production forecasting
- 5.7 Remarks
- Reference
- 6 Proxy comparison between neural network and k-nearest neighbors
- 6.1 Introduction
- 6.2 Reservoir model
- 6.3 Parameters identification and screening
- 6.4 History matching
- 6.5 Probabilistic forecasting
- 6.6 Remarks
- References
- 7 Shale-gas well with and without enhanced permeability area
- 7.1 Introduction
- 7.2 Parameters identification and screening
- 7.3 History matching
- 7.4 Probabilistic forecasting
- 7.5 Remarks
- References
- 8 Shale-gas well with and without natural fractures
- 8.1 Introduction
- 8.2 Reservoir model
- 8.3 History matching
- 8.3.1 Case 1: hydraulic fractures only (no natural fractures)
- 8.3.2 Case 2: hydraulic fractures and natural fractures (with NF)
- 8.4 Discussion
- 8.5 Probabilistic production forecast
- 8.6 1000 History-matching solutions from neural networks