Cargando…
Tabla de Contenidos:
  • Front cover
  • Half title
  • Full title
  • Copyright
  • Contents
  • Foreword
  • 1
  • Introduction
  • 1.1 Concrete filled steel tubular columns
  • 1.2 Concrete encased steel columns
  • 1.3 Applications of high strength materials
  • 1.4 Construction method
  • 1.5 Design guide
  • 2
  • Materials
  • 2.1 Concrete
  • 2.2 Structural steel
  • 2.3 Reinforcing steel
  • 2.4 Shear connector
  • 2.5 Bolts
  • 3
  • Test database
  • 3.1 Test database on CFST columns
  • 3.1.1 General
  • 3.2 Influence of concrete strength
  • 3.3 Influence of steel strength
  • 3.4 Test database on CES columns
  • 3.4.1 General
  • 3.5 Influence of concrete strength
  • 3.6 Influence of steel strength
  • 3.7 Material compatibility between steel grade and concrete class
  • 4
  • Design of steel-concrete �composite columns considering high strength materials
  • 4.1 General
  • 4.2 Local buckling
  • 4.3 Resistance of cross sections
  • 4.3.1 Resistance to compression
  • 4.3.2 Resistance to shear forces
  • 4.3.3 Resistance to combined compression and bending
  • 4.4 Resistance of members
  • 4.4.1 Resistance to compression
  • 4.4.2 Resistance to combined compression and uniaxial bending
  • 4.4.3 Resistance to combined compression and biaxial bending
  • 4.5 Longitudinal shear
  • 4.6 Load introduction
  • 4.7 Differential shortening
  • 4.8 Summary
  • 5
  • Behaviour and analysis of high strength composite columns
  • 5.1 General
  • 5.2 Concrete encased steel members
  • 5.2.1 Premature cover spalling of high strength concrete
  • 5.2.1.1 Cover spalling phenomenon
  • 5.2.1.2 Cover spalling mechanism
  • 5.2.2 Confinement effect of CES section
  • 5.2.2.1 Subdivision of confinement zone
  • 5.2.2.2 Steel section-induced confinement
  • 5.2.2.3 Double confinement within steel section
  • 5.2.3 Behavioral analysis of CES members.
  • 5.2.3.1 Fiber section analysis
  • 5.2.3.2 Axial force-bending moment diagram
  • 5.2.3.3 Load-deflection response
  • 5.3 Concrete filled steel tubular members
  • 5.3.1 Effect of concrete confinement in CFST columns
  • 5.3.2 Flexural behavior
  • 5.3.2.1 Equivalent stress block of concrete in compression zone
  • 5.3.2.2 Effects of steel strength and neutral axis
  • 5.3.2.3 Effective flexural stiffness
  • 5.4 Numerical models for high strength CFST members
  • 5.4.1 Constitutive model of steel tube confined concrete
  • 5.4.2 Parameter calibration
  • 5.4.3 Implementation in finite element analysis
  • 6
  • Fire resistant design
  • 6.1 General
  • 6.2 Design fire scenarios
  • 6.3 Fire performance of materials
  • 6.3.1 Thermal properties
  • 6.3.1.1 High- and ultra-high strength concretes
  • 6.3.1.2 High strength steels
  • 6.3.2 Spalling of concrete at elevated temperatures
  • 6.3.3 Mechanical properties
  • 6.3.3.1 High- and ultra high- strength concretes
  • 6.3.3.2 High strength steels
  • 6.4 Temperature fields
  • 6.4.1 Heat transfer analysis by fdm
  • 6.4.2 Parameters for heat transfer analysis
  • 6.5 Prescriptive methods
  • 6.5.1 Concrete filled steel tubular columns
  • 6.5.2 Concrete encased steel columns
  • 6.6 Fire engineering approaches
  • 6.6.1 Design criteria
  • 6.6.2 Simple calculation model
  • 6.6.3 N-M interaction model
  • 6.6.4 Differences between scm and nmim
  • 6.7 Advanced calculation models
  • 7
  • Special considerations for high strength materials
  • 7.1 High tensile steel section ( f y &gt
  • 460 N/mm 2 )
  • 7.1.1 Hot forming
  • 7.1.2 Cold forming
  • 7.1.3 Cutting
  • 7.1.4 Bolt holes
  • 7.1.5 Welding
  • 7.1.6 Hot-Dip galvanization
  • 7.1.7 Inspection of welds
  • 7.2 High strength concrete ( f ck &gt
  • 50 N/mm 2 )
  • 7.2.1 Cement
  • 7.2.2 Coarse aggregate
  • 7.2.3 Fine aggregate.
  • 7.2.4 Supplementary cementitious materials
  • 7.2.5 Superplasticizer
  • 7.2.6 Mix proportion design
  • 7.2.7 Quality control
  • 7.2.8 Casting of concrete in steel tubes
  • 7.3 Ultra high-performance concrete ( f ck &gt
  • 120 MPa)
  • 7.3.1 Cement
  • 7.3.2 Silica fume
  • 7.3.3 Supplementary cementitious materials
  • 7.3.4 Coarse aggregates
  • 7.3.5 Fine aggregates
  • 7.3.6 Quartz powder
  • 7.3.7 Superplasticizer
  • 7.3.8 Fibers
  • 7.3.9 Mix proportion design
  • 7.3.10 Durability of UHPC
  • 7.3.11 Creep and shrinkage of UHPC
  • 8
  • Joints in composite construction
  • 8.1 General
  • 8.2 Column splices
  • 8.2.1 Bolted splice joints
  • 8.2.2 Welded splice joints
  • 8.3 Steel beam to composite column joints
  • 8.3.1 Simple connections
  • 8.3.1.1 Fin plate connection
  • 8.3.1.2 Through fin plate connection
  • 8.3.1.3 T-Stub
  • 8.3.1.4 Supporting bracket
  • 8.3.2 Moment connections
  • 8.3.2.1 External diaphragm plate
  • 8.3.2.2 Internal diaphragm plate
  • 8.3.2.3 Other types of moment connections
  • 8.3.2.4 Detailing for connections with unequal beams
  • 8.4 Reinforced concrete beam to composite column joints
  • 8.4.1 Simple connections
  • 8.4.2 Moment connections
  • 8.4.2.1 Through reinforcements
  • 8.4.2.2 Ring corbel with welded reinforcements
  • 8.5 Column base joints
  • 8.5.1 Simple connections
  • 8.5.2 Moment connections
  • 8.5.2.1 Exposed column bases
  • 8.5.2.2 Embedded column bases
  • 8.5.2.3 Concrete encased column bases
  • A
  • Design flowcharts
  • B
  • Work Examples and Comparison Studies
  • C
  • Design spreadsheets for composite columns
  • References
  • Index
  • Back cover.