Design of steel-concrete composite structures using high strength materials /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Duxford :
Woodhead Publishing,
2021.
|
Colección: | Woodhead Publishing series in civil and structural engineering.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front cover
- Half title
- Full title
- Copyright
- Contents
- Foreword
- 1
- Introduction
- 1.1 Concrete filled steel tubular columns
- 1.2 Concrete encased steel columns
- 1.3 Applications of high strength materials
- 1.4 Construction method
- 1.5 Design guide
- 2
- Materials
- 2.1 Concrete
- 2.2 Structural steel
- 2.3 Reinforcing steel
- 2.4 Shear connector
- 2.5 Bolts
- 3
- Test database
- 3.1 Test database on CFST columns
- 3.1.1 General
- 3.2 Influence of concrete strength
- 3.3 Influence of steel strength
- 3.4 Test database on CES columns
- 3.4.1 General
- 3.5 Influence of concrete strength
- 3.6 Influence of steel strength
- 3.7 Material compatibility between steel grade and concrete class
- 4
- Design of steel-concrete �composite columns considering high strength materials
- 4.1 General
- 4.2 Local buckling
- 4.3 Resistance of cross sections
- 4.3.1 Resistance to compression
- 4.3.2 Resistance to shear forces
- 4.3.3 Resistance to combined compression and bending
- 4.4 Resistance of members
- 4.4.1 Resistance to compression
- 4.4.2 Resistance to combined compression and uniaxial bending
- 4.4.3 Resistance to combined compression and biaxial bending
- 4.5 Longitudinal shear
- 4.6 Load introduction
- 4.7 Differential shortening
- 4.8 Summary
- 5
- Behaviour and analysis of high strength composite columns
- 5.1 General
- 5.2 Concrete encased steel members
- 5.2.1 Premature cover spalling of high strength concrete
- 5.2.1.1 Cover spalling phenomenon
- 5.2.1.2 Cover spalling mechanism
- 5.2.2 Confinement effect of CES section
- 5.2.2.1 Subdivision of confinement zone
- 5.2.2.2 Steel section-induced confinement
- 5.2.2.3 Double confinement within steel section
- 5.2.3 Behavioral analysis of CES members.
- 5.2.3.1 Fiber section analysis
- 5.2.3.2 Axial force-bending moment diagram
- 5.2.3.3 Load-deflection response
- 5.3 Concrete filled steel tubular members
- 5.3.1 Effect of concrete confinement in CFST columns
- 5.3.2 Flexural behavior
- 5.3.2.1 Equivalent stress block of concrete in compression zone
- 5.3.2.2 Effects of steel strength and neutral axis
- 5.3.2.3 Effective flexural stiffness
- 5.4 Numerical models for high strength CFST members
- 5.4.1 Constitutive model of steel tube confined concrete
- 5.4.2 Parameter calibration
- 5.4.3 Implementation in finite element analysis
- 6
- Fire resistant design
- 6.1 General
- 6.2 Design fire scenarios
- 6.3 Fire performance of materials
- 6.3.1 Thermal properties
- 6.3.1.1 High- and ultra-high strength concretes
- 6.3.1.2 High strength steels
- 6.3.2 Spalling of concrete at elevated temperatures
- 6.3.3 Mechanical properties
- 6.3.3.1 High- and ultra high- strength concretes
- 6.3.3.2 High strength steels
- 6.4 Temperature fields
- 6.4.1 Heat transfer analysis by fdm
- 6.4.2 Parameters for heat transfer analysis
- 6.5 Prescriptive methods
- 6.5.1 Concrete filled steel tubular columns
- 6.5.2 Concrete encased steel columns
- 6.6 Fire engineering approaches
- 6.6.1 Design criteria
- 6.6.2 Simple calculation model
- 6.6.3 N-M interaction model
- 6.6.4 Differences between scm and nmim
- 6.7 Advanced calculation models
- 7
- Special considerations for high strength materials
- 7.1 High tensile steel section ( f y >
- 460 N/mm 2 )
- 7.1.1 Hot forming
- 7.1.2 Cold forming
- 7.1.3 Cutting
- 7.1.4 Bolt holes
- 7.1.5 Welding
- 7.1.6 Hot-Dip galvanization
- 7.1.7 Inspection of welds
- 7.2 High strength concrete ( f ck >
- 50 N/mm 2 )
- 7.2.1 Cement
- 7.2.2 Coarse aggregate
- 7.2.3 Fine aggregate.
- 7.2.4 Supplementary cementitious materials
- 7.2.5 Superplasticizer
- 7.2.6 Mix proportion design
- 7.2.7 Quality control
- 7.2.8 Casting of concrete in steel tubes
- 7.3 Ultra high-performance concrete ( f ck >
- 120 MPa)
- 7.3.1 Cement
- 7.3.2 Silica fume
- 7.3.3 Supplementary cementitious materials
- 7.3.4 Coarse aggregates
- 7.3.5 Fine aggregates
- 7.3.6 Quartz powder
- 7.3.7 Superplasticizer
- 7.3.8 Fibers
- 7.3.9 Mix proportion design
- 7.3.10 Durability of UHPC
- 7.3.11 Creep and shrinkage of UHPC
- 8
- Joints in composite construction
- 8.1 General
- 8.2 Column splices
- 8.2.1 Bolted splice joints
- 8.2.2 Welded splice joints
- 8.3 Steel beam to composite column joints
- 8.3.1 Simple connections
- 8.3.1.1 Fin plate connection
- 8.3.1.2 Through fin plate connection
- 8.3.1.3 T-Stub
- 8.3.1.4 Supporting bracket
- 8.3.2 Moment connections
- 8.3.2.1 External diaphragm plate
- 8.3.2.2 Internal diaphragm plate
- 8.3.2.3 Other types of moment connections
- 8.3.2.4 Detailing for connections with unequal beams
- 8.4 Reinforced concrete beam to composite column joints
- 8.4.1 Simple connections
- 8.4.2 Moment connections
- 8.4.2.1 Through reinforcements
- 8.4.2.2 Ring corbel with welded reinforcements
- 8.5 Column base joints
- 8.5.1 Simple connections
- 8.5.2 Moment connections
- 8.5.2.1 Exposed column bases
- 8.5.2.2 Embedded column bases
- 8.5.2.3 Concrete encased column bases
- A
- Design flowcharts
- B
- Work Examples and Comparison Studies
- C
- Design spreadsheets for composite columns
- References
- Index
- Back cover.