Cargando…

Immunomodulatory biomaterials : regulating the immune response with biomaterials to affect clinical outcome /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Badylak, Stephen F. (Editor ), Elisseeff, Jennifer H. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Duxford : Woodhead Publishing, 2021.
Colección:Woodhead Publishing series in biomaterials.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Immunomodulatory Biomaterials: Regulating the Immune Response with Biomaterials to Affect Clinical Outcome
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter 1: Engineering physical biomaterial properties to manipulate macrophage phenotype: From bench to bedside
  • 1.1. Introduction
  • 1.2. Role of macrophages in tissue repair and the foreign body response
  • 1.3. Modulation of macrophage function via physical biomaterial properties in vitro
  • 1.3.1. Stiffness
  • 1.3.2. Topography or 3D architecture
  • 1.3.3. Ligand presentation or geometry of adhesion
  • 1.4. Macrophage response to implanted biomaterials in vivo
  • 1.4.1. Non-degradable biomaterials
  • 1.4.2. Degradable biomaterials
  • 1.5. Clinical insight into the effect of physical biomaterial properties on macrophages during tissue repair
  • 1.5.1. Dental implants
  • 1.5.2. Wound dressings
  • 1.5.3. Materials for cardiovascular repair
  • 1.6. Conclusions and future directions
  • References
  • Chapter 2: Early factors in the immune response to biomaterials
  • 2.1. Introduction
  • 2.2. Protein adsorption
  • 2.2.1. Complement cascade
  • 2.2.2. Coagulation
  • 2.2.3. Immunoglobulins
  • 2.2.4. Innate immunity
  • 2.2.4.1. Neutrophils
  • 2.2.4.2. Mast cells
  • 2.2.4.3. Macrophages/monocytes
  • 2.2.5. Adaptive immunity
  • 2.2.5.1. Dendritic cells
  • 2.2.5.2. T Cells
  • 2.2.5.3. B Cells
  • 2.3. Foreign body giant cells
  • 2.4. Fibrous capsule
  • 2.5. Signaling pathways activated
  • 2.5.1. TLRs and MyD88-dependent signaling
  • 2.5.2. Inflammasome activation
  • 2.5.3. JAK/STAT pathway
  • 2.6. Conclusion
  • References
  • Chapter 3: Nanotechnology and biomaterials for immune modulation and monitoring
  • 3.1. Introduction
  • 3.2. Autoimmunity
  • 3.3. Allergy
  • 3.4. Transplant rejection
  • 3.5. Clinical trials of tolerogenic nanotherapies
  • 3.5.1. Liposomal.
  • 3.5.2. Virus-like particles
  • 3.5.3. Metallic
  • 3.5.4. Polymeric
  • 3.6. Precision diagnostics
  • 3.6.1. Liquid biopsy
  • 3.6.2. Immunological niches
  • 3.7. Outlook and conclusion
  • Acknowledgments
  • References
  • Chapter 4: Immune-instructive materials and surfaces for medical applications
  • 4.1. Introduction
  • 4.1.1. Immune cells involved in inflammation
  • 4.1.2. The foreign body response
  • 4.2. Naturally occurring biomaterials with immune modulatory properties and their application in wound healing and reduct ...
  • 4.3. Bioinstructive synthetic materials and their application in regenerative medicine
  • 4.4. Developing ``immune-instructive�� biomaterials
  • 4.5. Concluding remarks
  • References
  • Chapter 5: Electrospun tissue regeneration biomaterials for immunomodulation
  • 5.1. Introduction
  • 5.2. Acknowledging immunomodulation in tissue engineering
  • 5.3. Well-studied areas
  • 5.3.1. Monocytes and macrophages
  • 5.3.2. Platelets
  • 5.4. Areas gaining attention
  • 5.4.1. Neutrophils
  • 5.4.2. Mast cells
  • 5.5. Areas needing attention
  • 5.5.1. Dendritic cells
  • 5.5.2. Eosinophils
  • 5.5.3. Basophils
  • 5.5.4. Natural killer cells
  • 5.5.5. T cells
  • 5.5.6. B cells
  • 5.6. Future directions
  • 5.7. Conclusion
  • References
  • Chapter 6: Biomaterials and immunomodulation for spinal cord repair
  • 6.1. Spinal cord injury
  • 6.1.1. Acute phase of SCI
  • 6.1.2. Subacute phase of SCI
  • 6.1.3. Chronic phase of SCI
  • 6.1.4. Self-repair after SCI
  • 6.1.5. Translational potential of animal models of SCI
  • 6.2. Immune response after SCI
  • 6.3. Immunomodulation after spinal cord injury
  • 6.4. Biomaterials for spinal cord repair
  • 6.5. Immunomodulatory biomaterials for spinal cord injury
  • 6.5.1. Immunomodulation by surface chemistry
  • 6.5.2. Immunomodulation by topography
  • 6.5.3. Immunomodulation by delivering agents.
  • 6.5.3.1. Immunomodulation by providing biological ligands
  • 6.5.3.2. Immunomodulation by delivering drugs
  • 6.5.3.3. Immunomodulation by carrying cells
  • 6.6. Natural immunomodulatory materials for spinal cord injury
  • 6.7. Considerations and future directions
  • 6.8. Conclusions and summary
  • Acknowledgments
  • References
  • Chapter 7: Biomaterial strategies to treat autoimmunity and unwanted immune responses to drugs and transplanted tissu
  • 7.1. Introduction
  • 7.1.1. Burden of disease
  • 7.1.2. Current treatment options and challenges
  • 7.1.3. Immunological causes of aberrant immune responses
  • 7.1.3.1. Immunological basis for autoimmune diseases
  • 7.1.3.2. Immunological basis for transplant rejection, anti-drug antibodies, and allergies
  • 7.1.4. Antigen-specific tolerance as a treatment goal
  • 7.2. Scope
  • 7.3. Biomaterials in development for autoimmunity and anti-drug antibodies
  • 7.3.1. Lessons from trials of free peptide and free protein
  • 7.3.1.1. Type 1 diabetes
  • 7.3.1.2. Multiple sclerosis
  • 7.3.2. Antigen delivery vehicles without additional regulatory cues
  • 7.3.2.1. Antigen depots
  • 7.3.2.2. Nanoparticles
  • 7.3.2.3. Alternative nanoparticle vehicles
  • 7.3.2.4. Targeting liver APCs
  • 7.3.2.5. Targeting splenic APCs
  • 7.3.3. Antigen delivery vehicles with additional regulatory cues
  • 7.3.3.1. Small molecule immunomodulators
  • 7.3.3.2. Cytokines
  • 7.3.4. Peptide-MHC complexes
  • 7.3.4.1. Soluble pMHC complexes
  • 7.3.4.2. Multimeric pMHC complexes
  • 7.3.4.3. Nanoparticle pMHC complexes
  • 7.4. Biomaterials in development for transplant tolerance
  • 7.4.1. Transplant ECDI-treated cells
  • 7.4.2. PLGA scaffold with transplanted cells and additional immunomodulatory drugs
  • 7.5. Future of the field
  • 7.5.1. Challenges and future directions
  • 7.5.1.1. Standardization of immunological goals and readouts.
  • 7.5.1.2. Further improvement in nanoparticle design
  • 7.5.1.3. Manufacturability
  • 7.5.2. Current or upcoming clinical trials
  • References
  • Chapter 8: Lipids as regulators of inflammation and tissue regeneration
  • 8.1. Introduction
  • 8.2. LC-MS based approaches to analyze lipids and their oxidation products
  • 8.3. Free PUFA and their oxidation products as signals for immunomodulation and tissue regeneration
  • 8.4. Oxidized phospholipids as modulators of the inflammatory response
  • 8.5. Phospholipid signatures of EV
  • 8.6. Hydrolysis of MBV derived oxygenated lipids and their possible role in inflammation and tissue regeneration
  • References
  • Chapter 9: Biomaterials modulation of the tumor immune environment for cancer immunotherapy
  • 9.1. Introduction
  • 9.2. Fundamentals of cancer immunology and immunotherapy
  • 9.2.1. Cancer biology: Setting the stage
  • 9.2.2. The role of immunity in cancer
  • 9.3. Immunomodulatory biomaterials in cancer therapy
  • 9.3.1. Cancer immunotherapy
  • 9.3.2. Immunomodulatory biomaterials
  • 9.3.3. Direct interactions between cancer and the biomaterial immune microenvironment
  • 9.3.4. Biomaterial scaffold cancer vaccines
  • 9.3.5. Biomaterial scaffolds for cell-based cancer immunotherapy
  • 9.3.6. Immune tissue engineering
  • 9.4. Summary
  • References
  • Chapter 10: Circumventing immune rejection and foreign body response to therapeutics of type 1 diabetes
  • 10.1. Introduction
  • 10.1.1. Type 1 diabetes (T1D)
  • 10.1.2. Insulin and other injectable therapeutics
  • 10.1.3. Biomaterials/devices
  • 10.1.4. CGMs and insulin pumps
  • 10.1.5. Cellular therapies
  • 10.1.6. Protective immunity
  • 10.2. Immune rejection for cells/grafts
  • 10.2.1. General concepts for graft implementation
  • 10.2.2. Transplant procedures
  • 10.2.3. Human donor considerations
  • 10.2.4. Alternative cell sources.
  • 10.2.4.1. Xenogeneic grafts
  • 10.2.4.2. Allogeneic grafts
  • 10.2.4.3. Syngeneic grafts
  • 10.2.4.4. Autologous grafts
  • 10.3. Biological hurdles to preventing graft rejection
  • 10.4. Advances in eliminating rejection of non-encapsulated grafts
  • 10.4.1. Edmonton protocol and anti-inflammatory strategies
  • 10.4.2. Delivery of antigen/nucleotide-based drugs for rejection suppression
  • 10.4.3. Engineering therapeutic cells to modulate immune response
  • 10.4.4. Tolerogenic vaccines
  • 10.4.5. Artificial antigen-presenting cells for inducing tolerance
  • 10.5. Advances in preventing FBR to bulk encapsulation systems
  • 10.5.1. Bioresorption vs. lack of biodegradability
  • 10.5.2. Non-biodegradable hydrogels/alginate and stable immune isolation
  • 10.5.3. Effects of altering physical architecture
  • 10.5.3.1. Size and shape
  • 10.5.3.2. Surface topography and selective porosity
  • 10.5.4. Chemical modification of material devices
  • 10.5.4.1. Identification of anti-fibrotic chemistries: Surface vs. bulk modified
  • 10.5.4.2. Zwitterionic (and other polymer-based) biocompatibility coatings
  • 10.5.5. Long-term controlled release systems for rejection prevention
  • 10.6. Pre/clinical observations, and models for translation
  • 10.6.1. Choosing the right test animal and transplant site
  • 10.6.2. Blood flow and nutrient considerations for graft viability
  • 10.7. Future prospects and perceived challenges/difficulties
  • 10.7.1. Increasing burdens on healthcare
  • 10.7.2. Population expansion and increasing age of the general human populace
  • 10.7.3. Increase in emerging diseases
  • 10.8. Summary/conclusion
  • References
  • Chapter 11: Machine learning and mechanistic computational modeling of inflammation as tools for designing immuno
  • 11.1. Biomaterials, inflammation, and wound healing.