Modern methods for affordable clinical gait analysis : theories and applications in healthcare systems /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Academic Press,
2021.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- MODERN METHODS FOR AFFORDABLE CLINICAL GAIT ANALYSIS
- MODERN METHODS FOR AFFORDABLE CLINICAL GAIT ANALYSIS
- Copyright
- Contents
- About the authors
- Preface
- Acknowledgment
- 1
- Introduction
- 1.1 What is gait?
- 1.2 Gait cycle
- 1.3 Features of gait
- 1.3.1 Spatio-temporal
- 1.3.2 Kinematic
- 1.3.3 Kinetic
- 1.3.4 Anthropometric
- 1.3.5 Electromyography
- 1.4 Model-based versus model-free gait assessment
- 1.4.1 Model-based human gait analysis
- 1.4.2 Model-free human gait analysis
- 1.5 Applications of gait analysis
- 1.6 Clinical aspects of human gait
- 1.6.1 Gait signal segmentation
- 1.6.2 Pathological gait detection
- 1.6.3 Injury prevention and recovery prediction
- 1.7 Sensors for gait data acquisition
- 1.8 Summary
- References
- 2
- Statistics and computational intelligence in clinical gait analysis
- 2.1 Introduction
- 2.2 Statistics in clinical gait data
- 2.2.1 Confidence interval, p-value, and effect size
- 2.2.2 Statistics in clinical trials
- 2.2.3 Systematic review and meta-analysis
- 2.3 Computational intelligence in clinical gait data
- 2.3.1 Why computational intelligence is important?
- 2.3.2 Learning paradigm
- 2.3.3 Applications of computational intelligence in clinical gait data
- 2.4 Statistics versus computational intelligence
- 2.5 Summary
- References
- 3
- Low-cost sensors for gait analysis
- 3.1 Introduction
- 3.2 Motion capture sensors for gait
- 3.2.1 Classification of sensors
- 3.2.2 Gold standard sensors
- 3.2.3 Affordable sensors
- 3.3 Microsoft kinect
- 3.3.1 First and second generation
- 3.3.2 Hardware and software specification
- 3.3.3 Data streams of kinect
- 3.3.4 Application in clinical gait assessment
- 3.4 Wearable sensors
- 3.4.1 Inertial sensors
- 3.4.1.1 Types of inertial sensors
- 3.4.1.2 Cost analysis of inertial sensors
- 3.4.1.3 Applications of inertial sensor in clinical gait assessment
- 3.4.2 Electromyography sensors
- 3.4.2.1 MyoWare muscle sensor
- 3.4.3 Others: force sensitive resistors, goniometers
- 3.5 Summary
- References
- 4
- Validation study of low-cost sensors
- 4.1 Introduction
- 4.2 Kinect validation for clinical usages
- 4.3 Inertial sensor validation on estimating joint angles
- 4.3.1 Evaluation metrics for validation of estimated joint angles
- 4.4 Summary
- References
- 5
- Gait segmentation and event detection techniques
- 5.1 Introduction
- 5.2 Why gait cycle segmentation?
- 5.3 Vision sensor-based gait cycle segmentation
- 5.3.1 Threshold-based methods
- 5.3.2 Machine learning-based methods
- 5.4 Kinect in gait cycle segmentation
- 5.5 Inertial sensor-based gait segmentation
- 5.5.1 Threshold-based methods
- 5.5.2 Machine intelligence-based methods
- 5.6 Electromyography sensor-based gait segmentation
- 5.6.1 Statistical methods