|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1262191605 |
003 |
OCoLC |
005 |
20231120010556.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
210730s2021 enka ob 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e rda
|e pn
|c YDX
|d OPELS
|d OCLCO
|d EBLCP
|d GZM
|d OCLCF
|d VTM
|d N$T
|d CNO
|d NLSHB
|d OCL
|d OCLCO
|d OCLCQ
|d COM
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9780323852463
|q (electronic bk.)
|
020 |
|
|
|a 0323852467
|q (electronic bk.)
|
020 |
|
|
|z 9780323852456
|
020 |
|
|
|z 0323852459
|
035 |
|
|
|a (OCoLC)1262191605
|
050 |
|
4 |
|a RC376.5
|b .N36 2021eb
|
060 |
|
4 |
|a WE 103
|b N364m 2021
|
082 |
0 |
4 |
|a 616.7
|2 23
|
100 |
1 |
|
|a Nandy, Anup,
|e author.
|
245 |
1 |
0 |
|a Modern methods for affordable clinical gait analysis :
|b theories and applications in healthcare systems /
|c Anup Nandy, Saikat Chakraborty, Jayeeta Chakraborty, Gentiane Venture.
|
264 |
|
1 |
|a London :
|b Academic Press,
|c 2021.
|
300 |
|
|
|a 1 online resource (x, 179 pages) :
|b color illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover -- MODERN METHODS FOR AFFORDABLE CLINICAL GAIT ANALYSIS -- MODERN METHODS FOR AFFORDABLE CLINICAL GAIT ANALYSIS -- Copyright -- Contents -- About the authors -- Preface -- Acknowledgment -- 1 -- Introduction -- 1.1 What is gait? -- 1.2 Gait cycle -- 1.3 Features of gait -- 1.3.1 Spatio-temporal -- 1.3.2 Kinematic -- 1.3.3 Kinetic -- 1.3.4 Anthropometric -- 1.3.5 Electromyography -- 1.4 Model-based versus model-free gait assessment -- 1.4.1 Model-based human gait analysis -- 1.4.2 Model-free human gait analysis -- 1.5 Applications of gait analysis
|
505 |
8 |
|
|a 1.6 Clinical aspects of human gait -- 1.6.1 Gait signal segmentation -- 1.6.2 Pathological gait detection -- 1.6.3 Injury prevention and recovery prediction -- 1.7 Sensors for gait data acquisition -- 1.8 Summary -- References -- 2 -- Statistics and computational intelligence in clinical gait analysis -- 2.1 Introduction -- 2.2 Statistics in clinical gait data -- 2.2.1 Confidence interval, p-value, and effect size -- 2.2.2 Statistics in clinical trials -- 2.2.3 Systematic review and meta-analysis -- 2.3 Computational intelligence in clinical gait data
|
505 |
8 |
|
|a 2.3.1 Why computational intelligence is important? -- 2.3.2 Learning paradigm -- 2.3.3 Applications of computational intelligence in clinical gait data -- 2.4 Statistics versus computational intelligence -- 2.5 Summary -- References -- 3 -- Low-cost sensors for gait analysis -- 3.1 Introduction -- 3.2 Motion capture sensors for gait -- 3.2.1 Classification of sensors -- 3.2.2 Gold standard sensors -- 3.2.3 Affordable sensors -- 3.3 Microsoft kinect -- 3.3.1 First and second generation -- 3.3.2 Hardware and software specification -- 3.3.3 Data streams of kinect
|
505 |
8 |
|
|a 3.3.4 Application in clinical gait assessment -- 3.4 Wearable sensors -- 3.4.1 Inertial sensors -- 3.4.1.1 Types of inertial sensors -- 3.4.1.2 Cost analysis of inertial sensors -- 3.4.1.3 Applications of inertial sensor in clinical gait assessment -- 3.4.2 Electromyography sensors -- 3.4.2.1 MyoWare muscle sensor -- 3.4.3 Others: force sensitive resistors, goniometers -- 3.5 Summary -- References -- 4 -- Validation study of low-cost sensors -- 4.1 Introduction -- 4.2 Kinect validation for clinical usages -- 4.3 Inertial sensor validation on estimating joint angles
|
505 |
8 |
|
|a 4.3.1 Evaluation metrics for validation of estimated joint angles -- 4.4 Summary -- References -- 5 -- Gait segmentation and event detection techniques -- 5.1 Introduction -- 5.2 Why gait cycle segmentation? -- 5.3 Vision sensor-based gait cycle segmentation -- 5.3.1 Threshold-based methods -- 5.3.2 Machine learning-based methods -- 5.4 Kinect in gait cycle segmentation -- 5.5 Inertial sensor-based gait segmentation -- 5.5.1 Threshold-based methods -- 5.5.2 Machine intelligence-based methods -- 5.6 Electromyography sensor-based gait segmentation -- 5.6.1 Statistical methods
|
650 |
|
0 |
|a Gait disorders.
|
650 |
|
0 |
|a Gait disorders
|x Diagnosis
|x Equipment and supplies.
|
650 |
|
0 |
|a Motion detectors.
|
650 |
|
0 |
|a Gait in humans.
|
650 |
|
0 |
|a Medical instruments and apparatus.
|
650 |
|
2 |
|a Gait Analysis
|0 (DNLM)D000077107
|
650 |
|
2 |
|a Gait
|0 (DNLM)D005684
|
650 |
|
2 |
|a Equipment and Supplies
|0 (DNLM)D004864
|
650 |
|
6 |
|a Troubles de la locomotion.
|0 (CaQQLa)201-0068363
|
650 |
|
6 |
|a D�etecteurs de mouvement.
|0 (CaQQLa)000287641
|
650 |
|
6 |
|a D�emarche.
|0 (CaQQLa)201-0162328
|
650 |
|
6 |
|a M�edecine
|x Appareils et instruments.
|0 (CaQQLa)201-0015728
|
650 |
|
7 |
|a Motion detectors
|2 fast
|0 (OCoLC)fst01894644
|
650 |
|
7 |
|a Gait disorders
|2 fast
|0 (OCoLC)fst00937058
|
650 |
|
7 |
|a Gait in humans
|2 fast
|0 (OCoLC)fst00937068
|
650 |
|
7 |
|a Medical instruments and apparatus
|2 fast
|0 (OCoLC)fst01014194
|
650 |
|
7 |
|a Lopen.
|2 nbdbt
|
650 |
|
7 |
|a Bewegingsleer.
|2 nbdbt
|
650 |
|
7 |
|a Diagnostiek.
|2 nbdbt
|
700 |
1 |
|
|a Chakraborty, Saikaat.
|
700 |
1 |
|
|a Chakraborty, Jayeeta.
|
700 |
1 |
|
|a Venture, Gentiane.
|
776 |
0 |
8 |
|i Print version:
|z 0323852459
|z 9780323852456
|w (OCoLC)1231959386
|
776 |
0 |
8 |
|i Print version:
|a Nandy, Anup.
|t Modern methodes for affordable clinical gait analysis.
|d London, United Kingdom ; San Diego, CA, United States : Academic Press, an imprint of Elsevier, [2021]
|z 9780323852456
|w (OCoLC)1255864351
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780323852456
|z Texto completo
|