|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1261363071 |
003 |
OCoLC |
005 |
20231120010555.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
210724s2021 enk o 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d OPELS
|d OCLCO
|d EBLCP
|d OCLCF
|d N$T
|d OCLCO
|d OCLCQ
|d K6U
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9780128218495
|q (electronic bk.)
|
020 |
|
|
|a 0128218495
|q (electronic bk.)
|
020 |
|
|
|z 9780128197400
|
020 |
|
|
|z 0128197404
|
035 |
|
|
|a (OCoLC)1261363071
|
050 |
|
4 |
|a QA76.87
|
082 |
0 |
4 |
|a 006.3/2
|2 23
|
245 |
0 |
0 |
|a State of the art in neural networks and their applications.
|n Volume 1 /
|c edited by Ayman S. El-Baz and Jasjit S. Suri.
|
260 |
|
|
|a London :
|b Academic Press,
|c 2021.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Includes index.
|
505 |
0 |
|
|a Front Cover -- State of the Art in Neural Networks and Their Applications -- Copyright Page -- Dedication -- Contents -- List of Contributors -- Biographies -- Acknowledgments -- 1 Computer-aided detection of abnormality in mammography using deep object detectors -- 1.1 Introduction -- 1.2 Literature review -- 1.3 Methodology -- 1.3.1 Architectures of deep convolutional neural networks and deep object detectors -- 1.3.2 Abnormality detection with faster R-convolutional neural networks -- 1.3.3 Abnormality detection with YOLO -- 1.4 Experimental results -- 1.4.1 Data preparation
|
505 |
8 |
|
|a 1.4.2 Abnormality detection with faster R-convolutional neural networks -- 1.4.3 Abnormality detection with YOLO -- 1.4.4 Results comparison -- 1.5 Discussions -- 1.6 Conclusion -- References -- 2 Detection of retinal abnormalities in fundus image using CNN deep learning networks -- 2.1 Introduction -- 2.2 Earlier screening and diagnosis of ocular diseases with CNN deep learning networks -- 2.2.1 Glaucoma -- 2.2.1.1 Methods and materials -- 2.2.1.2 Deep learning neural-network architectures for glaucoma screening and diagnosis
|
505 |
8 |
|
|a 2.2.1.3 Application and evaluation on earlier glaucoma screening and diagnosis-classification -- 2.2.1.3.1 Fundus image glaucoma classification -- 2.2.1.3.2 Optical coherence tomography image glaucoma classification -- 2.2.1.4 Datasets used in glaucoma diagnosis -- 2.2.2 Age-related macular degeneration -- 2.2.2.1 Methods and materials -- 2.2.2.2 Deep learning-based methods for age-related macular degeneration detection and grading -- 2.2.3 Diabetic retinopathy -- 2.2.3.1 Methods and materials -- 2.2.3.2 Deep learning-based methods for diabetic retinopathy detection and grading
|
505 |
8 |
|
|a 2.2.3.3 Dataset used diabetic retinopathy diagnosis -- 2.2.4 Cataract -- 2.2.4.1 Methods and materials -- 2.2.4.2 Deep learning-based methods for cataract detection and grading -- 2.3 Deep learning-based smartphone for detection of retinal abnormalities -- 2.3.1 Smartphone-captured fundus image evaluation -- 2.3.2 Deep learning-based method of ocular pathology detection from smartphone-captured fundus image -- 2.4 Discussion -- 2.5 Conclusion -- References -- 3 A survey of deep learning-based methods for cryo-electron tomography data analysis -- 3.1 Introduction -- 3.2 Deep learning-based methods
|
505 |
8 |
|
|a 3.2.1 Detection and segmentation -- 3.2.2 Classification -- 3.2.3 Others -- 3.3 Conclusion -- References -- 4 Detection, segmentation, and numbering of teeth in dental panoramic images with mask regions with convolutional neural ne... -- 4.1 Introduction -- 4.2 Related work -- 4.3 F�ed�eration Dentaire Internationale tooth numbering system -- 4.4 The method -- 4.4.1 Implementation details -- 4.4.1.1 Tooth numbering -- 4.5 Experimental analysis -- 4.5.1 Dataset -- 4.5.2 Evaluation -- 4.5.3 Results -- 4.6 Discussion and conclusions -- References
|
650 |
|
0 |
|a Neural networks (Computer science)
|
650 |
|
0 |
|a Diagnostic imaging
|x Data processing.
|
650 |
|
0 |
|a Image analysis.
|
650 |
|
2 |
|a Neural Networks, Computer
|0 (DNLM)D016571
|
650 |
|
6 |
|a R�eseaux neuronaux (Informatique)
|0 (CaQQLa)201-0209597
|
650 |
|
6 |
|a Imagerie pour le diagnostic
|0 (CaQQLa)201-0146124
|x Informatique.
|0 (CaQQLa)201-0380011
|
650 |
|
6 |
|a Analyse d'images.
|0 (CaQQLa)201-0313660
|
650 |
|
7 |
|a Diagnostic imaging
|x Data processing
|2 fast
|0 (OCoLC)fst00892357
|
650 |
|
7 |
|a Image analysis
|2 fast
|0 (OCoLC)fst00967482
|
650 |
|
7 |
|a Neural networks (Computer science)
|2 fast
|0 (OCoLC)fst01036260
|
700 |
1 |
|
|a El-Baz, Ayman S.
|
700 |
1 |
|
|a Suri, Jasjit S.
|
776 |
0 |
8 |
|i Print version:
|z 9780128218495
|
776 |
0 |
8 |
|i Print version:
|z 0128197404
|z 9780128197400
|w (OCoLC)1204138450
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128197400
|z Texto completo
|