Cargando…

Advances in atomic, molecular, and optical physics. Volume 70 /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Yelin, Susanne F. (Editor ), DiMauro, Louis (Editor ), Perrin, H. (H�el�ene) (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, MA : Academic Press, 2021.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Advances in Atomic, Molecular, and Optical Physics
  • Copyright
  • Contents
  • Contributors
  • Chapter One: Dynamic high-resolution optical trapping of ultracold atoms
  • 1. General considerations
  • 1.1. Introduction
  • 1.2. Overview of optical trapping
  • 1.3. Optical dipole trapping
  • 1.3.1. Atomic polarizability
  • 1.3.2. Transition strengths
  • 1.3.3. Dipole potential for alkali atoms
  • 1.3.4. Gaussian beam traps
  • 1.3.5. Higher order Gaussian traps
  • 1.4. Imaging equations
  • 1.4.1. Diffraction integrals
  • 1.4.2. Direct imaging
  • 1.4.3. SLM in the Fourier plane
  • 1.5. Additional imaging and illumination considerations
  • 1.5.1. Wavefront aberrations
  • 1.5.2. Imaging with spatially coherent light
  • 1.5.3. High numerical aperture optics
  • 1.6. Time-averaging
  • 1.6.1. Equations of motion
  • 1.6.2. Scanning frequency requirements
  • 1.6.3. Phase imprinted micromotion
  • 1.7. Consideration of experimental requirements
  • 1.7.1. Condensate density in optical potentials
  • 1.7.2. Spatial and temporal trapping resolution
  • 1.7.3. Optical trapping depth
  • 1.7.4. Modulator bandwidth
  • 1.7.5. Computational complexity
  • 1.7.6. Hardware selection
  • 2. Beam deflection devices
  • 2.1. Deflection theory
  • 2.1.1. Anisotropic dielectric media
  • 2.1.2. Impermeability modulation
  • 2.1.3. Acousto-optic deflection
  • 2.1.4. Electro-optic deflection
  • 2.2. Multiple beam optical traps
  • 2.2.1. Density-based feedforward
  • 2.2.2. Spatial resolution criteria
  • 2.2.3. Multiplexed operation of AODs
  • 2.2.4. Time-averaged operation of AODs
  • 2.2.5. Dynamical trapping sequences
  • 2.3. Technical considerations
  • 2.3.1. Deflection efficiency
  • 2.3.2. Hardware selection
  • 3. Digital micromirror devices
  • 3.1. DMD-SLM diffraction theory
  • 3.2. DMD-SLM imaging implementations
  • 3.2.1. Direct imaging
  • 3.2.2. Halftoning.
  • 3.2.3. Time-averaging
  • 3.2.4. Binary Fourier plane holograms with DMD-SLMs
  • 3.2.5. Potential correction methods (feedback)
  • 3.3. Technical considerations
  • 4. Liquid crystal devices
  • 4.1. Beam shaping with liquid crystal SLMs
  • 4.1.1. Fundamental principles of Fourier mode of operation
  • 4.1.2. Amplitude efficiency
  • 4.1.3. Reshaping light fields
  • 4.1.4. Analytical approximations to beam shaping
  • 4.1.5. Iterative solutions to beam shaping
  • 4.1.6. Direct imaging
  • 4.2. Technical considerations
  • 4.2.1. Speed
  • 4.2.2. Calibration
  • 4.2.3. Fringing (cross-talk) and flicker
  • 4.2.4. Hardware selection
  • 5. Concluding remarks
  • 5.1. Device comparisons
  • 5.2. Future directions
  • Acknowledgments
  • References
  • Chapter Two: High-harmonic generation in solids
  • 1. Introduction
  • 2. Understanding HHG in solids
  • 2.1. Interband polarization and intraband currents: An introduction
  • 2.2. Intraband mechanism of HHG
  • 2.2.1. Equations of motion in a periodic lattice
  • 2.2.2. Derivation of the intraband current
  • 2.2.3. Understanding Bloch oscillations
  • 2.3. Details on the interband mechanism
  • 2.4. Theoretical methods
  • 2.5. The role of the dephasing time
  • 2.6. The cutoff
  • 2.7. Intraband versus interband
  • 2.8. Comparison of HHG in gases and solids
  • 3. Applying HHG in solids
  • 3.1. Reconstructing the band structure (in reciprocal space)
  • 3.2. Reconstructing the crystal lattice (in real space)
  • 3.3. Symmetry effects
  • 3.4. Measuring the Berry curvature
  • 3.5. Extracting higher order nonlinear susceptibilities
  • 3.6. Controlling HHG in solids via doping
  • 3.7. HHG in graphene and other 2D materials
  • 4. Conclusion and outlook
  • Acknowledgments
  • References
  • Chapter Three: Laser-cooled molecules
  • 1. Introduction
  • 2. Choosing molecules and designing laser cooling schemes
  • 2.1. Desirable properties.
  • 2.2. Notation for molecular structure
  • 2.3. Transition strengths and selection rules
  • 2.4. Vibrational branching ratios
  • 2.5. Closed rotational transitions
  • 2.6. Hyperfine structure
  • 2.6.1. Hyperfine interactions
  • 2.6.2. Examples of hyperfine structure
  • 2.6.3. Hyperfine-induced transitions
  • 2.7. Dark states
  • 2.7.1. Destabilizing dark states
  • 2.7.2. Engineering dark states
  • 2.8. Intermediate electronic states
  • 2.9. Polyatomic molecules
  • 3. Models of laser cooling
  • 3.1. Rate model
  • 3.1.1. Scattering rate
  • 3.1.2. Force, damping constant, and spring constant
  • 3.1.3. Temperature
  • 3.1.4. Applications of the rate model
  • 3.1.5. Limitations of the rate model
  • 3.2. Optical Bloch equations
  • 3.2.1. The model
  • 3.2.2. Sisyphus forces in 1D
  • 3.2.3. Sisyphus forces in 3D
  • 3.2.4. Applications of the OBE model
  • 3.2.5. Limitations of the OBE model
  • 4. Laser slowing
  • 4.1. Molecular beams and radiation-pressure slowing
  • 4.2. Simulating the slowing sequence
  • 4.3. Frequency-chirped vs frequency-broadened slowing
  • 4.4. Reducing losses during slowing
  • 5. Magneto-optical trapping
  • 5.1. Dual-frequency MOT
  • 5.2. Radio-frequency MOT
  • 5.3. Features of molecular MOTs
  • 6. Sub-Doppler cooling
  • 6.1. Cooling in one or two dimensions
  • 6.2. Cooling in three dimensions
  • 7. Magnetic trapping
  • 7.1. Zeeman effect
  • 7.2. State preparation and trapping
  • 7.3. Rotational coherences in magnetic traps
  • 8. Optical traps
  • 8.1. AC Stark effect
  • 8.2. Optical dipole traps
  • 8.3. Optical tweezer traps
  • 9. Applications and future directions
  • 9.1. Controlling dipole-dipole interactions
  • 9.2. Quantum simulation
  • 9.3. Quantum information processing
  • 9.4. Ultracold collisions, collisional cooling, and chemistry
  • 9.5. Probing fundamental physics
  • 10. Concluding remarks
  • Acknowledgments
  • References.
  • Chapter Four: Scattering theory with semiclassical asymptotes
  • 1. Introduction
  • 1.1. The imaging theorem
  • 2. Time-dependent scattering theory with semiclassical asymptotes
  • 2.1. The final state in the semiclassical IT
  • 2.2. The IT limit from the coordinate representation
  • 2.3. Asymptotic free motion
  • 2.4. Uniform field extraction: Reaction microscopes
  • 2.5. Probabilities and particle counting
  • 2.6. Interfering trajectories: Atom interferometer
  • 2.7. The initial state in the semiclassical IT
  • 2.8. The momentum wave function and the transition amplitude
  • 3. Time-independent scattering theory with semiclassical asymptotes
  • 3.1. The time-independent IT limit
  • 3.2. Asymptotic free motion
  • 3.3. Time from the semiclassical wave function
  • 3.4. Counting rates and cross section
  • 3.5. Interfering trajectories: Photodetachment microscope
  • 3.6. Quantum scattering and Kirchhoff diffraction
  • 4. Multiparticle fragmentation
  • 4.1. Time-dependent theory of fragmentation
  • 4.2. Time-independent theory of fragmentation
  • 4.3. Asymptotic free motion
  • 4.4. Measurement of time delays
  • 5. Commentary on the IT
  • 5.1. Attosecond physics and classical motion in the continuum
  • 5.2. Particle interactions in the continuum
  • 5.3. Quantum interference and entanglement
  • 6. Conclusions
  • Acknowledgments
  • References.