Advances in atomic, molecular, and optical physics. Volume 70 /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, MA :
Academic Press,
2021.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Advances in Atomic, Molecular, and Optical Physics
- Copyright
- Contents
- Contributors
- Chapter One: Dynamic high-resolution optical trapping of ultracold atoms
- 1. General considerations
- 1.1. Introduction
- 1.2. Overview of optical trapping
- 1.3. Optical dipole trapping
- 1.3.1. Atomic polarizability
- 1.3.2. Transition strengths
- 1.3.3. Dipole potential for alkali atoms
- 1.3.4. Gaussian beam traps
- 1.3.5. Higher order Gaussian traps
- 1.4. Imaging equations
- 1.4.1. Diffraction integrals
- 1.4.2. Direct imaging
- 1.4.3. SLM in the Fourier plane
- 1.5. Additional imaging and illumination considerations
- 1.5.1. Wavefront aberrations
- 1.5.2. Imaging with spatially coherent light
- 1.5.3. High numerical aperture optics
- 1.6. Time-averaging
- 1.6.1. Equations of motion
- 1.6.2. Scanning frequency requirements
- 1.6.3. Phase imprinted micromotion
- 1.7. Consideration of experimental requirements
- 1.7.1. Condensate density in optical potentials
- 1.7.2. Spatial and temporal trapping resolution
- 1.7.3. Optical trapping depth
- 1.7.4. Modulator bandwidth
- 1.7.5. Computational complexity
- 1.7.6. Hardware selection
- 2. Beam deflection devices
- 2.1. Deflection theory
- 2.1.1. Anisotropic dielectric media
- 2.1.2. Impermeability modulation
- 2.1.3. Acousto-optic deflection
- 2.1.4. Electro-optic deflection
- 2.2. Multiple beam optical traps
- 2.2.1. Density-based feedforward
- 2.2.2. Spatial resolution criteria
- 2.2.3. Multiplexed operation of AODs
- 2.2.4. Time-averaged operation of AODs
- 2.2.5. Dynamical trapping sequences
- 2.3. Technical considerations
- 2.3.1. Deflection efficiency
- 2.3.2. Hardware selection
- 3. Digital micromirror devices
- 3.1. DMD-SLM diffraction theory
- 3.2. DMD-SLM imaging implementations
- 3.2.1. Direct imaging
- 3.2.2. Halftoning.
- 3.2.3. Time-averaging
- 3.2.4. Binary Fourier plane holograms with DMD-SLMs
- 3.2.5. Potential correction methods (feedback)
- 3.3. Technical considerations
- 4. Liquid crystal devices
- 4.1. Beam shaping with liquid crystal SLMs
- 4.1.1. Fundamental principles of Fourier mode of operation
- 4.1.2. Amplitude efficiency
- 4.1.3. Reshaping light fields
- 4.1.4. Analytical approximations to beam shaping
- 4.1.5. Iterative solutions to beam shaping
- 4.1.6. Direct imaging
- 4.2. Technical considerations
- 4.2.1. Speed
- 4.2.2. Calibration
- 4.2.3. Fringing (cross-talk) and flicker
- 4.2.4. Hardware selection
- 5. Concluding remarks
- 5.1. Device comparisons
- 5.2. Future directions
- Acknowledgments
- References
- Chapter Two: High-harmonic generation in solids
- 1. Introduction
- 2. Understanding HHG in solids
- 2.1. Interband polarization and intraband currents: An introduction
- 2.2. Intraband mechanism of HHG
- 2.2.1. Equations of motion in a periodic lattice
- 2.2.2. Derivation of the intraband current
- 2.2.3. Understanding Bloch oscillations
- 2.3. Details on the interband mechanism
- 2.4. Theoretical methods
- 2.5. The role of the dephasing time
- 2.6. The cutoff
- 2.7. Intraband versus interband
- 2.8. Comparison of HHG in gases and solids
- 3. Applying HHG in solids
- 3.1. Reconstructing the band structure (in reciprocal space)
- 3.2. Reconstructing the crystal lattice (in real space)
- 3.3. Symmetry effects
- 3.4. Measuring the Berry curvature
- 3.5. Extracting higher order nonlinear susceptibilities
- 3.6. Controlling HHG in solids via doping
- 3.7. HHG in graphene and other 2D materials
- 4. Conclusion and outlook
- Acknowledgments
- References
- Chapter Three: Laser-cooled molecules
- 1. Introduction
- 2. Choosing molecules and designing laser cooling schemes
- 2.1. Desirable properties.
- 2.2. Notation for molecular structure
- 2.3. Transition strengths and selection rules
- 2.4. Vibrational branching ratios
- 2.5. Closed rotational transitions
- 2.6. Hyperfine structure
- 2.6.1. Hyperfine interactions
- 2.6.2. Examples of hyperfine structure
- 2.6.3. Hyperfine-induced transitions
- 2.7. Dark states
- 2.7.1. Destabilizing dark states
- 2.7.2. Engineering dark states
- 2.8. Intermediate electronic states
- 2.9. Polyatomic molecules
- 3. Models of laser cooling
- 3.1. Rate model
- 3.1.1. Scattering rate
- 3.1.2. Force, damping constant, and spring constant
- 3.1.3. Temperature
- 3.1.4. Applications of the rate model
- 3.1.5. Limitations of the rate model
- 3.2. Optical Bloch equations
- 3.2.1. The model
- 3.2.2. Sisyphus forces in 1D
- 3.2.3. Sisyphus forces in 3D
- 3.2.4. Applications of the OBE model
- 3.2.5. Limitations of the OBE model
- 4. Laser slowing
- 4.1. Molecular beams and radiation-pressure slowing
- 4.2. Simulating the slowing sequence
- 4.3. Frequency-chirped vs frequency-broadened slowing
- 4.4. Reducing losses during slowing
- 5. Magneto-optical trapping
- 5.1. Dual-frequency MOT
- 5.2. Radio-frequency MOT
- 5.3. Features of molecular MOTs
- 6. Sub-Doppler cooling
- 6.1. Cooling in one or two dimensions
- 6.2. Cooling in three dimensions
- 7. Magnetic trapping
- 7.1. Zeeman effect
- 7.2. State preparation and trapping
- 7.3. Rotational coherences in magnetic traps
- 8. Optical traps
- 8.1. AC Stark effect
- 8.2. Optical dipole traps
- 8.3. Optical tweezer traps
- 9. Applications and future directions
- 9.1. Controlling dipole-dipole interactions
- 9.2. Quantum simulation
- 9.3. Quantum information processing
- 9.4. Ultracold collisions, collisional cooling, and chemistry
- 9.5. Probing fundamental physics
- 10. Concluding remarks
- Acknowledgments
- References.
- Chapter Four: Scattering theory with semiclassical asymptotes
- 1. Introduction
- 1.1. The imaging theorem
- 2. Time-dependent scattering theory with semiclassical asymptotes
- 2.1. The final state in the semiclassical IT
- 2.2. The IT limit from the coordinate representation
- 2.3. Asymptotic free motion
- 2.4. Uniform field extraction: Reaction microscopes
- 2.5. Probabilities and particle counting
- 2.6. Interfering trajectories: Atom interferometer
- 2.7. The initial state in the semiclassical IT
- 2.8. The momentum wave function and the transition amplitude
- 3. Time-independent scattering theory with semiclassical asymptotes
- 3.1. The time-independent IT limit
- 3.2. Asymptotic free motion
- 3.3. Time from the semiclassical wave function
- 3.4. Counting rates and cross section
- 3.5. Interfering trajectories: Photodetachment microscope
- 3.6. Quantum scattering and Kirchhoff diffraction
- 4. Multiparticle fragmentation
- 4.1. Time-dependent theory of fragmentation
- 4.2. Time-independent theory of fragmentation
- 4.3. Asymptotic free motion
- 4.4. Measurement of time delays
- 5. Commentary on the IT
- 5.1. Attosecond physics and classical motion in the continuum
- 5.2. Particle interactions in the continuum
- 5.3. Quantum interference and entanglement
- 6. Conclusions
- Acknowledgments
- References.