Cargando…

Advances in atomic, molecular, and optical physics. Volume 70 /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Yelin, Susanne F. (Editor ), DiMauro, Louis (Editor ), Perrin, H. (H�el�ene) (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, MA : Academic Press, 2021.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_on1260191222
003 OCoLC
005 20231120010553.0
006 m o d
007 cr |n|||||||||
008 210714s2021 mau o 000 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d OPELS  |d OCLCO  |d OCLCF  |d OCLCQ  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9780323850957  |q (electronic bk.) 
020 |a 0323850952  |q (electronic bk.) 
020 |z 9780128246108 
020 |z 0128246103 
035 |a (OCoLC)1260191222 
050 4 |a QC173 
082 0 4 |a 539  |2 23 
245 0 0 |a Advances in atomic, molecular, and optical physics.  |n Volume 70 /  |c edited by Susanne F. Yelin, Louis F. DiMauro, Helene Perrin. 
260 |a Cambridge, MA :  |b Academic Press,  |c 2021. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Intro -- Advances in Atomic, Molecular, and Optical Physics -- Copyright -- Contents -- Contributors -- Chapter One: Dynamic high-resolution optical trapping of ultracold atoms -- 1. General considerations -- 1.1. Introduction -- 1.2. Overview of optical trapping -- 1.3. Optical dipole trapping -- 1.3.1. Atomic polarizability -- 1.3.2. Transition strengths -- 1.3.3. Dipole potential for alkali atoms -- 1.3.4. Gaussian beam traps -- 1.3.5. Higher order Gaussian traps -- 1.4. Imaging equations -- 1.4.1. Diffraction integrals -- 1.4.2. Direct imaging -- 1.4.3. SLM in the Fourier plane -- 1.5. Additional imaging and illumination considerations -- 1.5.1. Wavefront aberrations -- 1.5.2. Imaging with spatially coherent light -- 1.5.3. High numerical aperture optics -- 1.6. Time-averaging -- 1.6.1. Equations of motion -- 1.6.2. Scanning frequency requirements -- 1.6.3. Phase imprinted micromotion -- 1.7. Consideration of experimental requirements -- 1.7.1. Condensate density in optical potentials -- 1.7.2. Spatial and temporal trapping resolution -- 1.7.3. Optical trapping depth -- 1.7.4. Modulator bandwidth -- 1.7.5. Computational complexity -- 1.7.6. Hardware selection -- 2. Beam deflection devices -- 2.1. Deflection theory -- 2.1.1. Anisotropic dielectric media -- 2.1.2. Impermeability modulation -- 2.1.3. Acousto-optic deflection -- 2.1.4. Electro-optic deflection -- 2.2. Multiple beam optical traps -- 2.2.1. Density-based feedforward -- 2.2.2. Spatial resolution criteria -- 2.2.3. Multiplexed operation of AODs -- 2.2.4. Time-averaged operation of AODs -- 2.2.5. Dynamical trapping sequences -- 2.3. Technical considerations -- 2.3.1. Deflection efficiency -- 2.3.2. Hardware selection -- 3. Digital micromirror devices -- 3.1. DMD-SLM diffraction theory -- 3.2. DMD-SLM imaging implementations -- 3.2.1. Direct imaging -- 3.2.2. Halftoning. 
505 8 |a 3.2.3. Time-averaging -- 3.2.4. Binary Fourier plane holograms with DMD-SLMs -- 3.2.5. Potential correction methods (feedback) -- 3.3. Technical considerations -- 4. Liquid crystal devices -- 4.1. Beam shaping with liquid crystal SLMs -- 4.1.1. Fundamental principles of Fourier mode of operation -- 4.1.2. Amplitude efficiency -- 4.1.3. Reshaping light fields -- 4.1.4. Analytical approximations to beam shaping -- 4.1.5. Iterative solutions to beam shaping -- 4.1.6. Direct imaging -- 4.2. Technical considerations -- 4.2.1. Speed -- 4.2.2. Calibration -- 4.2.3. Fringing (cross-talk) and flicker -- 4.2.4. Hardware selection -- 5. Concluding remarks -- 5.1. Device comparisons -- 5.2. Future directions -- Acknowledgments -- References -- Chapter Two: High-harmonic generation in solids -- 1. Introduction -- 2. Understanding HHG in solids -- 2.1. Interband polarization and intraband currents: An introduction -- 2.2. Intraband mechanism of HHG -- 2.2.1. Equations of motion in a periodic lattice -- 2.2.2. Derivation of the intraband current -- 2.2.3. Understanding Bloch oscillations -- 2.3. Details on the interband mechanism -- 2.4. Theoretical methods -- 2.5. The role of the dephasing time -- 2.6. The cutoff -- 2.7. Intraband versus interband -- 2.8. Comparison of HHG in gases and solids -- 3. Applying HHG in solids -- 3.1. Reconstructing the band structure (in reciprocal space) -- 3.2. Reconstructing the crystal lattice (in real space) -- 3.3. Symmetry effects -- 3.4. Measuring the Berry curvature -- 3.5. Extracting higher order nonlinear susceptibilities -- 3.6. Controlling HHG in solids via doping -- 3.7. HHG in graphene and other 2D materials -- 4. Conclusion and outlook -- Acknowledgments -- References -- Chapter Three: Laser-cooled molecules -- 1. Introduction -- 2. Choosing molecules and designing laser cooling schemes -- 2.1. Desirable properties. 
505 8 |a 2.2. Notation for molecular structure -- 2.3. Transition strengths and selection rules -- 2.4. Vibrational branching ratios -- 2.5. Closed rotational transitions -- 2.6. Hyperfine structure -- 2.6.1. Hyperfine interactions -- 2.6.2. Examples of hyperfine structure -- 2.6.3. Hyperfine-induced transitions -- 2.7. Dark states -- 2.7.1. Destabilizing dark states -- 2.7.2. Engineering dark states -- 2.8. Intermediate electronic states -- 2.9. Polyatomic molecules -- 3. Models of laser cooling -- 3.1. Rate model -- 3.1.1. Scattering rate -- 3.1.2. Force, damping constant, and spring constant -- 3.1.3. Temperature -- 3.1.4. Applications of the rate model -- 3.1.5. Limitations of the rate model -- 3.2. Optical Bloch equations -- 3.2.1. The model -- 3.2.2. Sisyphus forces in 1D -- 3.2.3. Sisyphus forces in 3D -- 3.2.4. Applications of the OBE model -- 3.2.5. Limitations of the OBE model -- 4. Laser slowing -- 4.1. Molecular beams and radiation-pressure slowing -- 4.2. Simulating the slowing sequence -- 4.3. Frequency-chirped vs frequency-broadened slowing -- 4.4. Reducing losses during slowing -- 5. Magneto-optical trapping -- 5.1. Dual-frequency MOT -- 5.2. Radio-frequency MOT -- 5.3. Features of molecular MOTs -- 6. Sub-Doppler cooling -- 6.1. Cooling in one or two dimensions -- 6.2. Cooling in three dimensions -- 7. Magnetic trapping -- 7.1. Zeeman effect -- 7.2. State preparation and trapping -- 7.3. Rotational coherences in magnetic traps -- 8. Optical traps -- 8.1. AC Stark effect -- 8.2. Optical dipole traps -- 8.3. Optical tweezer traps -- 9. Applications and future directions -- 9.1. Controlling dipole-dipole interactions -- 9.2. Quantum simulation -- 9.3. Quantum information processing -- 9.4. Ultracold collisions, collisional cooling, and chemistry -- 9.5. Probing fundamental physics -- 10. Concluding remarks -- Acknowledgments -- References. 
505 8 |a Chapter Four: Scattering theory with semiclassical asymptotes -- 1. Introduction -- 1.1. The imaging theorem -- 2. Time-dependent scattering theory with semiclassical asymptotes -- 2.1. The final state in the semiclassical IT -- 2.2. The IT limit from the coordinate representation -- 2.3. Asymptotic free motion -- 2.4. Uniform field extraction: Reaction microscopes -- 2.5. Probabilities and particle counting -- 2.6. Interfering trajectories: Atom interferometer -- 2.7. The initial state in the semiclassical IT -- 2.8. The momentum wave function and the transition amplitude -- 3. Time-independent scattering theory with semiclassical asymptotes -- 3.1. The time-independent IT limit -- 3.2. Asymptotic free motion -- 3.3. Time from the semiclassical wave function -- 3.4. Counting rates and cross section -- 3.5. Interfering trajectories: Photodetachment microscope -- 3.6. Quantum scattering and Kirchhoff diffraction -- 4. Multiparticle fragmentation -- 4.1. Time-dependent theory of fragmentation -- 4.2. Time-independent theory of fragmentation -- 4.3. Asymptotic free motion -- 4.4. Measurement of time delays -- 5. Commentary on the IT -- 5.1. Attosecond physics and classical motion in the continuum -- 5.2. Particle interactions in the continuum -- 5.3. Quantum interference and entanglement -- 6. Conclusions -- Acknowledgments -- References. 
650 0 |a Nuclear physics. 
650 0 |a Atoms. 
650 0 |a Molecules. 
650 0 |a Physical optics. 
650 6 |a Physique nucl�eaire.  |0 (CaQQLa)201-0002614 
650 6 |a Atomes.  |0 (CaQQLa)201-0006001 
650 6 |a Mol�ecules.  |0 (CaQQLa)201-0013771 
650 6 |a Optique physique.  |0 (CaQQLa)201-0045330 
650 7 |a nuclear physics.  |2 aat  |0 (CStmoGRI)aat300054569 
650 7 |a Atoms  |2 fast  |0 (OCoLC)fst00820656 
650 7 |a Molecules  |2 fast  |0 (OCoLC)fst01024869 
650 7 |a Nuclear physics  |2 fast  |0 (OCoLC)fst01040386 
650 7 |a Physical optics  |2 fast  |0 (OCoLC)fst01062718 
700 1 |a Yelin, Susanne F.,  |e editor. 
700 1 |a DiMauro, Louis,  |e editor. 
700 1 |a Perrin, H.  |q (H�el�ene),  |e editor. 
776 0 8 |i Print version:  |t Advances in atomic, molecular, and optical physics. Volume 70.  |d Cambridge, MA : Academic Press, 2021  |z 0128246103  |z 9780128246108  |w (OCoLC)1230231768 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/1049250X/70  |z Texto completo