|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1260191222 |
003 |
OCoLC |
005 |
20231120010553.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
210714s2021 mau o 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d OPELS
|d OCLCO
|d OCLCF
|d OCLCQ
|d SFB
|d OCLCO
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9780323850957
|q (electronic bk.)
|
020 |
|
|
|a 0323850952
|q (electronic bk.)
|
020 |
|
|
|z 9780128246108
|
020 |
|
|
|z 0128246103
|
035 |
|
|
|a (OCoLC)1260191222
|
050 |
|
4 |
|a QC173
|
082 |
0 |
4 |
|a 539
|2 23
|
245 |
0 |
0 |
|a Advances in atomic, molecular, and optical physics.
|n Volume 70 /
|c edited by Susanne F. Yelin, Louis F. DiMauro, Helene Perrin.
|
260 |
|
|
|a Cambridge, MA :
|b Academic Press,
|c 2021.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Intro -- Advances in Atomic, Molecular, and Optical Physics -- Copyright -- Contents -- Contributors -- Chapter One: Dynamic high-resolution optical trapping of ultracold atoms -- 1. General considerations -- 1.1. Introduction -- 1.2. Overview of optical trapping -- 1.3. Optical dipole trapping -- 1.3.1. Atomic polarizability -- 1.3.2. Transition strengths -- 1.3.3. Dipole potential for alkali atoms -- 1.3.4. Gaussian beam traps -- 1.3.5. Higher order Gaussian traps -- 1.4. Imaging equations -- 1.4.1. Diffraction integrals -- 1.4.2. Direct imaging -- 1.4.3. SLM in the Fourier plane -- 1.5. Additional imaging and illumination considerations -- 1.5.1. Wavefront aberrations -- 1.5.2. Imaging with spatially coherent light -- 1.5.3. High numerical aperture optics -- 1.6. Time-averaging -- 1.6.1. Equations of motion -- 1.6.2. Scanning frequency requirements -- 1.6.3. Phase imprinted micromotion -- 1.7. Consideration of experimental requirements -- 1.7.1. Condensate density in optical potentials -- 1.7.2. Spatial and temporal trapping resolution -- 1.7.3. Optical trapping depth -- 1.7.4. Modulator bandwidth -- 1.7.5. Computational complexity -- 1.7.6. Hardware selection -- 2. Beam deflection devices -- 2.1. Deflection theory -- 2.1.1. Anisotropic dielectric media -- 2.1.2. Impermeability modulation -- 2.1.3. Acousto-optic deflection -- 2.1.4. Electro-optic deflection -- 2.2. Multiple beam optical traps -- 2.2.1. Density-based feedforward -- 2.2.2. Spatial resolution criteria -- 2.2.3. Multiplexed operation of AODs -- 2.2.4. Time-averaged operation of AODs -- 2.2.5. Dynamical trapping sequences -- 2.3. Technical considerations -- 2.3.1. Deflection efficiency -- 2.3.2. Hardware selection -- 3. Digital micromirror devices -- 3.1. DMD-SLM diffraction theory -- 3.2. DMD-SLM imaging implementations -- 3.2.1. Direct imaging -- 3.2.2. Halftoning.
|
505 |
8 |
|
|a 3.2.3. Time-averaging -- 3.2.4. Binary Fourier plane holograms with DMD-SLMs -- 3.2.5. Potential correction methods (feedback) -- 3.3. Technical considerations -- 4. Liquid crystal devices -- 4.1. Beam shaping with liquid crystal SLMs -- 4.1.1. Fundamental principles of Fourier mode of operation -- 4.1.2. Amplitude efficiency -- 4.1.3. Reshaping light fields -- 4.1.4. Analytical approximations to beam shaping -- 4.1.5. Iterative solutions to beam shaping -- 4.1.6. Direct imaging -- 4.2. Technical considerations -- 4.2.1. Speed -- 4.2.2. Calibration -- 4.2.3. Fringing (cross-talk) and flicker -- 4.2.4. Hardware selection -- 5. Concluding remarks -- 5.1. Device comparisons -- 5.2. Future directions -- Acknowledgments -- References -- Chapter Two: High-harmonic generation in solids -- 1. Introduction -- 2. Understanding HHG in solids -- 2.1. Interband polarization and intraband currents: An introduction -- 2.2. Intraband mechanism of HHG -- 2.2.1. Equations of motion in a periodic lattice -- 2.2.2. Derivation of the intraband current -- 2.2.3. Understanding Bloch oscillations -- 2.3. Details on the interband mechanism -- 2.4. Theoretical methods -- 2.5. The role of the dephasing time -- 2.6. The cutoff -- 2.7. Intraband versus interband -- 2.8. Comparison of HHG in gases and solids -- 3. Applying HHG in solids -- 3.1. Reconstructing the band structure (in reciprocal space) -- 3.2. Reconstructing the crystal lattice (in real space) -- 3.3. Symmetry effects -- 3.4. Measuring the Berry curvature -- 3.5. Extracting higher order nonlinear susceptibilities -- 3.6. Controlling HHG in solids via doping -- 3.7. HHG in graphene and other 2D materials -- 4. Conclusion and outlook -- Acknowledgments -- References -- Chapter Three: Laser-cooled molecules -- 1. Introduction -- 2. Choosing molecules and designing laser cooling schemes -- 2.1. Desirable properties.
|
505 |
8 |
|
|a 2.2. Notation for molecular structure -- 2.3. Transition strengths and selection rules -- 2.4. Vibrational branching ratios -- 2.5. Closed rotational transitions -- 2.6. Hyperfine structure -- 2.6.1. Hyperfine interactions -- 2.6.2. Examples of hyperfine structure -- 2.6.3. Hyperfine-induced transitions -- 2.7. Dark states -- 2.7.1. Destabilizing dark states -- 2.7.2. Engineering dark states -- 2.8. Intermediate electronic states -- 2.9. Polyatomic molecules -- 3. Models of laser cooling -- 3.1. Rate model -- 3.1.1. Scattering rate -- 3.1.2. Force, damping constant, and spring constant -- 3.1.3. Temperature -- 3.1.4. Applications of the rate model -- 3.1.5. Limitations of the rate model -- 3.2. Optical Bloch equations -- 3.2.1. The model -- 3.2.2. Sisyphus forces in 1D -- 3.2.3. Sisyphus forces in 3D -- 3.2.4. Applications of the OBE model -- 3.2.5. Limitations of the OBE model -- 4. Laser slowing -- 4.1. Molecular beams and radiation-pressure slowing -- 4.2. Simulating the slowing sequence -- 4.3. Frequency-chirped vs frequency-broadened slowing -- 4.4. Reducing losses during slowing -- 5. Magneto-optical trapping -- 5.1. Dual-frequency MOT -- 5.2. Radio-frequency MOT -- 5.3. Features of molecular MOTs -- 6. Sub-Doppler cooling -- 6.1. Cooling in one or two dimensions -- 6.2. Cooling in three dimensions -- 7. Magnetic trapping -- 7.1. Zeeman effect -- 7.2. State preparation and trapping -- 7.3. Rotational coherences in magnetic traps -- 8. Optical traps -- 8.1. AC Stark effect -- 8.2. Optical dipole traps -- 8.3. Optical tweezer traps -- 9. Applications and future directions -- 9.1. Controlling dipole-dipole interactions -- 9.2. Quantum simulation -- 9.3. Quantum information processing -- 9.4. Ultracold collisions, collisional cooling, and chemistry -- 9.5. Probing fundamental physics -- 10. Concluding remarks -- Acknowledgments -- References.
|
505 |
8 |
|
|a Chapter Four: Scattering theory with semiclassical asymptotes -- 1. Introduction -- 1.1. The imaging theorem -- 2. Time-dependent scattering theory with semiclassical asymptotes -- 2.1. The final state in the semiclassical IT -- 2.2. The IT limit from the coordinate representation -- 2.3. Asymptotic free motion -- 2.4. Uniform field extraction: Reaction microscopes -- 2.5. Probabilities and particle counting -- 2.6. Interfering trajectories: Atom interferometer -- 2.7. The initial state in the semiclassical IT -- 2.8. The momentum wave function and the transition amplitude -- 3. Time-independent scattering theory with semiclassical asymptotes -- 3.1. The time-independent IT limit -- 3.2. Asymptotic free motion -- 3.3. Time from the semiclassical wave function -- 3.4. Counting rates and cross section -- 3.5. Interfering trajectories: Photodetachment microscope -- 3.6. Quantum scattering and Kirchhoff diffraction -- 4. Multiparticle fragmentation -- 4.1. Time-dependent theory of fragmentation -- 4.2. Time-independent theory of fragmentation -- 4.3. Asymptotic free motion -- 4.4. Measurement of time delays -- 5. Commentary on the IT -- 5.1. Attosecond physics and classical motion in the continuum -- 5.2. Particle interactions in the continuum -- 5.3. Quantum interference and entanglement -- 6. Conclusions -- Acknowledgments -- References.
|
650 |
|
0 |
|a Nuclear physics.
|
650 |
|
0 |
|a Atoms.
|
650 |
|
0 |
|a Molecules.
|
650 |
|
0 |
|a Physical optics.
|
650 |
|
6 |
|a Physique nucl�eaire.
|0 (CaQQLa)201-0002614
|
650 |
|
6 |
|a Atomes.
|0 (CaQQLa)201-0006001
|
650 |
|
6 |
|a Mol�ecules.
|0 (CaQQLa)201-0013771
|
650 |
|
6 |
|a Optique physique.
|0 (CaQQLa)201-0045330
|
650 |
|
7 |
|a nuclear physics.
|2 aat
|0 (CStmoGRI)aat300054569
|
650 |
|
7 |
|a Atoms
|2 fast
|0 (OCoLC)fst00820656
|
650 |
|
7 |
|a Molecules
|2 fast
|0 (OCoLC)fst01024869
|
650 |
|
7 |
|a Nuclear physics
|2 fast
|0 (OCoLC)fst01040386
|
650 |
|
7 |
|a Physical optics
|2 fast
|0 (OCoLC)fst01062718
|
700 |
1 |
|
|a Yelin, Susanne F.,
|e editor.
|
700 |
1 |
|
|a DiMauro, Louis,
|e editor.
|
700 |
1 |
|
|a Perrin, H.
|q (H�el�ene),
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Advances in atomic, molecular, and optical physics. Volume 70.
|d Cambridge, MA : Academic Press, 2021
|z 0128246103
|z 9780128246108
|w (OCoLC)1230231768
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/bookseries/1049250X/70
|z Texto completo
|