Green biocomposites for biomedical engineering : design, properties, and applications /
Green Biocomposites for Biomedical Engineering: Design, Properties, and Applications combines emergent research outcomes with fundamental theoretical concepts relevant to processing, properties and applications of advanced green composites in the field of biomedical engineering. The book outlines th...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford :
Woodhead Publishing,
2021.
|
Colección: | Woodhead Publishing series in biomaterials.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Green Biocomposites for Biomedical Engineering: Design, Properties, and Applications
- Copyright
- Dedication
- Contents
- Contributors
- About the editors
- Preface
- Section A: Introduction and design of biocomposites
- 1 Introduction to green biocomposites
- 1.1 Introduction
- 1.2 Benefits of polymer composites
- 1.3 History of composites
- 1.4 Natural fiber-reinforced polymer composites
- 1.5 Green biocomposites
- 1.5.1 Natural fiber
- 1.5.2 Biopolymer matrix
- 1.6 Biomedical applications of green biocomposites
- 1.7 Ecological concerns about plastic pollution
- References
- 2 Computational modeling of biocomposites
- 2.1 Introduction
- 2.1.1 Computational modeling and validation
- 2.2 Modeling of bionanocomposites
- 2.3 Mechanical modeling and failure analysis of biocomposites
- 2.3.1 Micromechanical analysis
- 2.3.2 Macromechanical analysis
- 2.3.3 Mesoscale analysis
- 2.4 Thermal modeling of biocomposites
- 2.5 Modeling of biocomposites for biomedical applications
- 2.6 Conclusion
- References
- Section B: Diversities of biocomposites
- 3 Antimicrobial biocomposites
- 3.1 Introduction
- 3.2 Polysaccharides-based biocomposite and its antimicrobial effect
- 3.2.1 Starch and its derivatives
- 3.2.2 Cellulose and its derivatives
- 3.2.3 Pectin and its derivatives
- 3.2.4 Chitosan and its derivatives
- 3.2.5 Seaweed biopolymers
- 3.3 Proteins/polypeptides-based biocomposite and its antimicrobial effect
- 3.3.1 Keratin
- 3.3.2 Caseinates
- 3.3.3 Collagen
- 3.4 Ammonium and Phosphonium group-based biocomposite and its antimicrobial effect
- 3.5 Antimicrobial response of hydroxyapatite (HA)-based biocomposites
- 3.6 Effect of metal-based Nanopowders on antibacterial response
- 3.6.1 Antibacterial response of zinc oxide (ZnO) nanoparticles.
- 3.6.2 Antibacterial response of silver (Ag) nanoparticles
- 3.6.3 Antibacterial response of copper and copper oxide nanoparticles
- 3.6.4 Antibacterial response of Iron oxide nanoparticles
- 3.6.5 Antibacterial response of magnesium oxide (MgO) nanoparticles
- 3.6.6 Antibacterial response of gold (Au) nanoparticles
- 3.7 Antimicrobial nanofibers
- 3.7.1 Antimicrobial nanofibers by physical mixture
- 3.7.2 Antimicrobial nanofibers by chemical modification of polymers
- 3.8 Antimicrobial biocomposite in food coating
- 3.8.1 Properties of polysaccharides for antimicrobial food coating
- 3.9 Antimicrobial bio-packaging
- 3.9.1 System models
- 3.9.2 Antimicrobial mechanisms in food packaging
- 3.10 Antimicrobial biocomposite for biomedical application
- 3.10.1 Antimicrobial wound dressing
- 3.10.2 Bone and tissue engineering
- 3.11 Conclusion and future perspectives
- References
- 4 Bioactive glass composites: From synthesis to application
- 4.1 Introduction
- 4.2 Synthesis of glass composites
- 4.3 Synthesis approaches of bioactive glass composites
- 4.3.1 Physical approach
- 4.3.1.1 Melt quench method
- 4.3.1.2 Spray pyrolysis method
- 4.3.1.3 Spray drying method
- 4.3.1.4 Electrospinning method
- 4.3.1.5 Laser spinning technique
- 4.3.2 Chemical approach
- 4.3.2.1 Sol-gel method
- 4.3.2.2 Microemulsion approach
- 4.3.2.3 Hydrothermal method
- 4.3.3 Biological methods
- 4.3.4 Hybrid methods
- 4.3.5 Other novel methods
- 4.4 Properties of bioactive glass composites
- 4.4.1 Mechanical property
- 4.4.2 Optical property
- 4.4.3 Magnetic property
- 4.4.4 Electrical property
- 4.4.5 Other properties
- 4.5 Applications of bioactive glass composites
- 4.5.1 Orthopedic applications
- 4.5.2 Antimicrobial applications
- 4.5.3 Drug delivery applications.
- 4.5.4 Cardiovascular applications
- 4.5.5 Dental applications
- 4.6 Future perspective and conclusion
- References
- 5 An overview of metal oxide-filled biocomposites
- 5.1 Introduction
- 5.2 Copper oxide (CuO) -filled biocomposites
- 5.3 Zinc oxides-filled biocomposites
- 5.3.1 Mechanical, thermal, antibacterial, and other properties of ZnO-based biocomposites
- 5.4 Magnesium oxide-filled biocomposites
- 5.4.1 Properties of MgO-based composites
- 5.5 Conclusions and future prospects
- Acknowledgment
- References
- 6 Bioresorbable biocomposites
- 6.1 Introduction
- 6.2 Preparation of bioresorbable biocomposites
- 6.2.1 3D bioprinting
- 6.2.2 Sol-gel process
- 6.2.3 Solvent casting
- 6.2.4 Hot pressing
- 6.3 Different types of bioresorbable biocomposites
- 6.3.1 PLA-based biocomposites
- 6.3.2 Calcium phosphate-based biocomposites
- 6.3.3 Silk-based biocomposites
- 6.3.4 Nanoparticle-reinforced biocomposites
- 6.3.4.1 Nanometal-based biocomposites
- 6.3.4.2 Carbon nanotube-based biocomposites
- 6.3.4.3 Gelatin-based biocomposites
- 6.3.4.4 Collagen-based biocomposites
- 6.3.4.5 Nanoclay-based biocomposites
- 6.4 Biocomposites for biomedical applications
- 6.5 Conclusions
- References
- 7 Cellulose-based biocomposites
- 7.1 Introduction
- 7.2 Chemistry of cellulose
- 7.3 Designing cellulosic biocomposite in different forms
- 7.3.1 Cellulose-based fibers
- 7.3.2 Cellulose-based crystals
- 7.3.3 Cellulose-based hydrogels
- 7.3.4 Cellulose-based films
- 7.3.5 Cellulose-based powders
- 7.3.6 Cellulose-based biofoams
- 7.4 Formation of cellulose in biomass
- 7.5 Natural formation in plants
- 7.5.1 Natural formation in microorganisms
- 7.6 Extraction of cellulose
- 7.7 Physico-chemical properties of cellulose and its derivatives
- 7.7.1 Physical properties.
- 7.7.2 Thermal properties
- 7.7.3 Electrical properties
- 7.7.4 Chemical properties
- 7.8 Cellulose-based biocomposites
- 7.8.1 Fiber-matrix interfacial interaction
- 7.8.2 Surface modification methods
- 7.8.2.1 Physical treatments
- 7.8.2.2 Physico-chemical treatments
- 7.8.2.3 Chemical treatments
- 7.8.3 Conventional processing methods
- 7.9 Applications of cellulose-based biocomposites in biomedical engineering
- 7.9.1 In tissue engineering and regenerative medicine
- 7.9.1.1 Bone tissue grafts
- 7.9.1.2 Cartilage, ligament, and tendon
- 7.9.1.3 Intervertebral disc and meniscus implant
- 7.9.1.4 Cardiac prosthesis
- 7.9.1.5 Artificial blood vessels
- 7.9.2 In wound dressing, artificial skin, and skin tissue repairing
- 7.9.3 In dental applications
- 7.9.4 In ophthalmologic applications
- 7.9.5 In biosensors and diagnostic devices
- 7.9.6 In drug delivery
- 7.9.7 In neural applications
- 7.10 Future trends
- 7.11 Conclusions
- References
- 8 Graphene-based nanocomposites for biomedical engineering application
- 8.1 Introduction
- 8.2 Synthesis of graphene-based nanocomposite
- 8.3 Properties of graphene-based nanocomposite
- 8.4 Biomedical applications of graphene-based nanocomposites
- 8.4.1 Drug delivery applications
- 8.4.2 Gene therapy applications
- 8.4.3 Tissue engineering applications
- 8.4.4 Antibacterial applications
- 8.4.5 Biosensing applications
- 8.4.6 Orthopedic and dental applications
- 8.5 Conclusion
- References
- 9 Fabrication and characterization of chicken feather fiber-reinforced polymer composites
- 9.1 Introduction
- 9.2 Materials and methods
- 9.2.1 Chicken keratin fiber (CFF) extraction
- 9.3 Chicken keratin fiber characteristics
- 9.3.1 Cleanliness and color
- 9.3.2 Textural property
- 9.3.3 Mechanical property.
- 9.3.4 Absorbed moisture content
- 9.4 Composites fabrication
- 9.5 Composite characterization
- 9.5.1 Physical properties
- 9.5.2 Mechanical properties
- 9.5.3 Thermal characteristics
- 9.5.4 Morphological properties
- 9.5.5 Fourier transform infra-red (FTIR) spectroscopy
- 9.5.6 X-ray diffraction (XRD)
- 9.6 Fiber characteristics
- 9.6.1 Cleanliness and color
- 9.6.2 FTIR spectra
- 9.6.3 XRD analysis
- 9.6.4 Thermal analysis
- 9.6.5 Moisture regain
- 9.6.6 Linear fiber density
- 9.6.7 Mechanical properties
- 9.6.8 Microstructural analysis
- 9.7 FTIR spectra of chicken keratin fiber-reinforced vinyl ester composites
- 9.8 XRD curves of chicken keratin fiber vinyl ester composites
- 9.9 Effect on physical properties of CFF polymer composites
- 9.10 Effect on mechanical characteristics of chicken keratin fiber-reinforced polymer laminates
- 9.10.1 Tensile properties
- 9.10.2 Compression properties
- 9.10.3 Flexural properties
- 9.10.4 Impact strength and Vickers hardness
- 9.11 Effect on thermal stability of CFF polymer composites
- 9.12 Morphological properties
- 9.13 Conclusion
- References
- 10 Sugarcane nanocellulose fiber-reinforced vinyl ester nanocomposites
- 10.1 Introduction
- 10.2 Materials and methods
- 10.2.1 Chemical treatment on sugarcane nanocellulose
- 10.2.2 Fabrication of vinyl ester composite
- 10.2.3 Vinyl ester nanocomposites characterization
- 10.2.3.1 Physical properties
- 10.2.3.2 Mechanical properties
- 10.2.3.3 Tensile fracture
- 10.2.3.4 Thermal characteristics
- 10.3 Results and discussion
- 10.3.1 Physical properties
- 10.3.2 Mechanical properties
- 10.3.2.1 Tensile properties
- 10.3.2.2 Tensile fracture
- 10.3.2.3 Compression properties
- 10.3.2.4 Flexural properties
- 10.3.2.5 Impact strength and hardness.