Battery system modeling /
Battery System Modeling provides advances on the modeling of lithium-ion batteries. Offering step-by-step explanations, the book systematically guides the reader through the modeling of state of charge estimation, energy prediction, power evaluation, health estimation, and active control strategies....
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
2021.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Battery System Modeling
- Copyright
- Contents
- Chapter 1: Lithium-ion battery characteristics and applications
- 1.1. Introduction to lithium-ion battery technology
- 1.1.1. Development history
- 1.1.2. Energy storage technologies
- 1.2. Battery working mechanism
- 1.2.1. Characteristic analysis
- 1.2.2. Components and working principle
- 1.2.3. Lithium-ion battery construction
- 1.2.4. Charge-discharge strategies
- 1.3. Lithium-ion battery chemistries
- 1.3.1. Lithium-ion battery family
- 1.3.2. Battery with different materials
- 1.3.3. Solid-state lithium-ion battery
- 1.3.4. Comparative battery types analysis
- 1.4. Lithium-ion battery characteristics
- 1.4.1. Internal parameter relationship
- 1.4.2. Capacity characteristics
- 1.4.3. Open-circuit voltage
- 1.4.4. Internal resistance characteristic
- 1.4.5. Power capability variation
- 1.4.6. Coulombic efficiency
- 1.5. Battery aging behavior
- 1.5.1. Aging mechanisms
- 1.5.2. Calendar aging process
- 1.5.3. Temperature effect on aging process
- 1.6. Lithium-ion battery applications
- 1.6.1. Applications
- 1.6.2. System state estimation
- 1.6.3. Battery safety protection
- 1.6.4. Battery life guarantee
- 1.6.5. Status and trends
- 1.7. Conclusion
- Acknowledgments
- Conflict of interest
- References
- Chapter 2: Electrical equivalent circuit modeling
- 2.1. Modeling method overview
- 2.1.1. Modeling types and concepts
- 2.1.2. Comparative equivalent models
- 2.1.3. Commercial circuit models
- 2.1.4. Electrochemical model
- 2.1.5. Equivalent circuit model
- 2.1.6. Principle description
- Modeling steps
- Model selection
- 2.1.7. Parameter identification
- 2.2. Improved internal resistance modeling
- 2.2.1. Theoretical resistance modeling
- 2.2.2. Battery model establishment
- 2.2.3. Internal resistance description
- 2.2.4. Open-circuit voltage characteristics
- 2.3. Thevenin modeling
- 2.3.1. Construction of Thevenin model
- 2.3.2. Charge-discharge characteristics
- 2.3.3. State equation establishment
- 2.3.4. Mathematical description
- 2.4. High-order modeling
- 2.4.1. Second-order circuit modeling
- 2.4.2. Internal resistance description
- 2.4.3. Splice equivalent modeling
- 2.5. Parameter identification algorithms
- 2.5.1. Identification overview
- 2.5.2. Least-square functional fitting
- 2.5.3. Forgetting factor correction
- 2.6. Experimental analysis
- 2.6.1. Exponential curve fitting
- 2.6.2. Polynomial relationship description
- 2.6.3. Identified parameter variation
- 2.6.4. Pulse voltage tracking effect
- 2.6.5. Modeling accuracy verification
- 2.7. Conclusion
- Acknowledgments
- Conflict of interest
- References
- Chapter 3: Electrochemical Nernst modeling
- 3.1. Nernst modeling and improvement
- 3.1.1. Model building process
- 3.1.2. Parameter identification strategies
- 3.1.3. State-space description