Cargando…

Battery system modeling /

Battery System Modeling provides advances on the modeling of lithium-ion batteries. Offering step-by-step explanations, the book systematically guides the reader through the modeling of state of charge estimation, energy prediction, power evaluation, health estimation, and active control strategies....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wang, Shunli (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2021.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Battery System Modeling
  • Copyright
  • Contents
  • Chapter 1: Lithium-ion battery characteristics and applications
  • 1.1. Introduction to lithium-ion battery technology
  • 1.1.1. Development history
  • 1.1.2. Energy storage technologies
  • 1.2. Battery working mechanism
  • 1.2.1. Characteristic analysis
  • 1.2.2. Components and working principle
  • 1.2.3. Lithium-ion battery construction
  • 1.2.4. Charge-discharge strategies
  • 1.3. Lithium-ion battery chemistries
  • 1.3.1. Lithium-ion battery family
  • 1.3.2. Battery with different materials
  • 1.3.3. Solid-state lithium-ion battery
  • 1.3.4. Comparative battery types analysis
  • 1.4. Lithium-ion battery characteristics
  • 1.4.1. Internal parameter relationship
  • 1.4.2. Capacity characteristics
  • 1.4.3. Open-circuit voltage
  • 1.4.4. Internal resistance characteristic
  • 1.4.5. Power capability variation
  • 1.4.6. Coulombic efficiency
  • 1.5. Battery aging behavior
  • 1.5.1. Aging mechanisms
  • 1.5.2. Calendar aging process
  • 1.5.3. Temperature effect on aging process
  • 1.6. Lithium-ion battery applications
  • 1.6.1. Applications
  • 1.6.2. System state estimation
  • 1.6.3. Battery safety protection
  • 1.6.4. Battery life guarantee
  • 1.6.5. Status and trends
  • 1.7. Conclusion
  • Acknowledgments
  • Conflict of interest
  • References
  • Chapter 2: Electrical equivalent circuit modeling
  • 2.1. Modeling method overview
  • 2.1.1. Modeling types and concepts
  • 2.1.2. Comparative equivalent models
  • 2.1.3. Commercial circuit models
  • 2.1.4. Electrochemical model
  • 2.1.5. Equivalent circuit model
  • 2.1.6. Principle description
  • Modeling steps
  • Model selection
  • 2.1.7. Parameter identification
  • 2.2. Improved internal resistance modeling
  • 2.2.1. Theoretical resistance modeling
  • 2.2.2. Battery model establishment
  • 2.2.3. Internal resistance description
  • 2.2.4. Open-circuit voltage characteristics
  • 2.3. Thevenin modeling
  • 2.3.1. Construction of Thevenin model
  • 2.3.2. Charge-discharge characteristics
  • 2.3.3. State equation establishment
  • 2.3.4. Mathematical description
  • 2.4. High-order modeling
  • 2.4.1. Second-order circuit modeling
  • 2.4.2. Internal resistance description
  • 2.4.3. Splice equivalent modeling
  • 2.5. Parameter identification algorithms
  • 2.5.1. Identification overview
  • 2.5.2. Least-square functional fitting
  • 2.5.3. Forgetting factor correction
  • 2.6. Experimental analysis
  • 2.6.1. Exponential curve fitting
  • 2.6.2. Polynomial relationship description
  • 2.6.3. Identified parameter variation
  • 2.6.4. Pulse voltage tracking effect
  • 2.6.5. Modeling accuracy verification
  • 2.7. Conclusion
  • Acknowledgments
  • Conflict of interest
  • References
  • Chapter 3: Electrochemical Nernst modeling
  • 3.1. Nernst modeling and improvement
  • 3.1.1. Model building process
  • 3.1.2. Parameter identification strategies
  • 3.1.3. State-space description