Generative adversarial networks for image-to-image translation /
"Generative Adversarial Networks (GAN) have started a revolution in Deep Learning, and today GAN is one of the most researched topics in Artificial Intelligence. Generative Adversarial Networks for Image-to-Image Translation provides a comprehensive overview of the GAN (Generative Adversarial N...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Academic Press,
2021.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Generative Adversarial Networks for Image-to-Image Translation
- Copyright
- Contents
- Contributors
- Chapter 1: Super-resolution-based GAN for image processing: Recent advances and future trends
- 1.1. Introduction
- 1.1.1. Train the discriminator
- 1.1.2. Train the generator
- 1.1.3. Organization of the chapter
- 1.2. Background study
- 1.3. SR-GAN model for image processing
- 1.3.1. Architecture of SR-GAN
- 1.3.2. Network architecture
- 1.3.3. Perceptual loss
- 1.3.3.1. Content loss
- 1.3.3.2. Adversarial loss
- 1.4. Case study
- 1.4.1. Case study 1: Application of EE-GAN to enhance object detection
- 1.4.2. Case study 2: Edge-enhanced GAN for remote sensing image
- 1.4.3. Case study 3: Application of SRGAN on video surveillance and forensic application
- 1.4.4. Case study 4: Super-resolution of video using SRGAN
- 1.5. Open issues and challenges
- 1.6. Conclusion and future scope
- References
- Chapter 2: GAN models in natural language processing and image translation
- 2.1. Introduction
- 2.1.1. Variational auto encoders
- 2.1.1.1. Drawback of VAE
- 2.1.2. Brief introduction to GAN
- 2.2. Basic GAN model classification based on learning
- 2.2.1. Unsupervised learning
- 2.2.1.1. Vanilla GAN
- 2.2.1.2. WGAN
- 2.2.1.3. WGAN-GP
- 2.2.1.4. Info GAN
- 2.2.1.5. BEGAN
- 2.2.1.6. Unsupervised sequential GAN
- 2.2.1.7. Parallel GAN
- 2.2.1.8. Cycle GAN
- 2.2.2. Semisupervised learning
- 2.2.2.1. Semi GAN
- 2.2.3. Supervised learning
- 2.2.3.1. CGAN
- 2.2.3.2. BiGAN
- 2.2.3.3. ACGAN
- 2.2.3.4. Supervised seq-GAN
- 2.2.4. Comparison of GAN models
- 2.2.5. Pros and cons of the GAN models
- 2.3. GANs in natural language processing
- 2.3.1. Application of GANs in natural language processing
- 2.3.1.1. Generation of semantically similar human-understandable summaries using SeqGAN with policy gradient
- Semantic similarity discriminator
- 2.3.1.2. Generation of quality language descriptions and ranking using RankGAN
- 2.3.1.3. Dialogue generation using reinforce GAN
- 2.3.1.4. Text style transfer using UGAN
- 2.3.1.5. Tibetan question-answer corpus generation using Qu-GAN
- 2.3.1.6. Generation of the sentence with lexical constraints using BFGAN
- 2.3.1.7. Short-spoken language intent classification with cSeq-GAN
- 2.3.1.8. Recognition of Chinese characters using TH-GAN
- 2.3.2. NLP datasets
- 2.4. GANs in image generation and translation
- 2.4.1. Applications of GANs in image generation and translation
- 2.4.1.1. Ensemble learning GANs in face forensics
- 2.4.1.2. Spherical image generation from the 2D sketch using SGANs
- 2.4.1.3. Generation of radar images using TsGAN
- 2.4.1.4. Generation of CT from MRI using MCRCGAN
- 2.4.1.5. Generation of scenes from text using text-to-image GAN
- 2.4.1.6. Gastritis image generation using PG-GAN
- 2.4.1.7. Image-to-image translation using quality-aware GAN